发布信息

一种高灵敏度分布式光纤加速度传感器的制作方法

作者:admin      2022-10-28 21:00:49     784



测量装置的制造及其应用技术1.本发明涉及传感器技术领域,具体是一种高灵敏度分布式光纤加速度传感器。背景技术:2.振动会对大部分大型工程、机械、电子设备产生不利影响。振幅大的振动会降低仪器的测试精度,缩短机器的寿命,甚至造成严重的破坏性事件。所以振动信号监测技术是非常重要的。通过实时监测振动信号,可以及早发现错误并消除隐患,从而提高工程或设备的安全性和可靠性,防止事故发生。现今,由于高铁的快速发展,国内铁路枢纽越来越多,高铁的行驶安全就变的越来越重要,所以需要检测铁轨的振动是否达到安全的可行性,防止事故的发生。3.传统加速度传感器按工作原理可分为压电式、压阻式和电容式。压电式传感器是通过多种途径利用某些特殊的敏感芯体受振动作用后,会产生与之成正比的电荷信号的技术特性,来实现振动时产生的加速度的测量。压阻式传感器的敏感芯体为半导体材料制成串联电阻测量电桥来实现测量加速度信号。电容式传感器是由一个可移动的质量块与一个已固定的电极组成一个或两个电容,当受加速度作用时,质量块与固定电极之间会产生距离变化,使电容值的大小发生变化。压电式传感器有着较为广泛的应用,压阻式传感器应用一般,而电容式传感器应用范围较小,用于特殊的测量,如低频测量。4.光纤光栅传感器是一种无源设备,具有抗电磁干扰、轻便、体积小、精度高、远距离传输等优点。与其他类型的光纤传感器相比,具有稳定性高、不受光源波动影响的优点。因此,越来越多的光纤光栅传感器地应用于越来越多的实际工程领域。国内外常见的光纤光栅加速度传感器结构多为扭转梁式结构、竖直式结构以及多维测量式传感器。5.目前,随着科技发展,人们对于地震波、航空航天等领域探测的深入,提出了多维加速度传感器的需求。但现有技术很难通过一个传感器模块即可获取需要的空间加速度信息,传感器组装困难,操作复杂,都大大增加了整个系统的复杂性,无法满足振动测量的要求,并较好的运用在铁轨上,因此,针对以上现状,迫切需要开发一种高灵敏度分布式光纤加速度传感器,以克服当前实际应用中的不足。技术实现要素:6.本发明的目的在于提供一种高灵敏度分布式光纤加速度传感器,以解决上述背景技术中提出的问题。7.为实现上述目的,本发明提供如下技术方案:8.一种高灵敏度分布式光纤加速度传感器,所述高灵敏度分布式光纤加速度传感器包括:9.外壳组件;10.传感器检测机构,所述传感器检测机构呈三个不同的方位分布在所述外壳组件内,用于实现全方位的测量;11.其中,传感器检测机构包括有形变模块和光栅检测模块,所述形变模块与所述外壳组件相连接,形变模块上设置有光栅检测模块。12.与现有技术相比,本发明的有益效果是:13.(1)高灵敏度光纤加速度传感器有较高的灵敏度,优于其他光纤光栅传感器;14.(2)高灵敏度光纤加速度传感器的频率不受限制;15.(3)高灵敏度光纤加速度传感器采用阵列的形式,可以多方位的进行测量;16.(4)高灵敏度光纤加速度传感器能够达到大量程,宽频率,高灵敏度的分布式三维冲击振动测量。附图说明17.图1为本发明实施例中整体的结构示意图。18.图2为本发明实施例框架外壳部分的结构示意图。19.图3为本发明实施例中传感器检测机构部分的分布结构示意图。20.图4为本发明实施例中传感器检测机构部分的结构示意图。21.图5为本发明实施例中外壳组件部分的阵列结构示意图。22.图6为本发明实施例中传感器检测机构部分的阵列结构示意图。23.图7为本发明实施例中传感器检测机构部分的一维测量结构示意图。24.图8为本发明实施例中光纤光栅工作原理示意图。25.图9为本发明实施例中光栅距离变化示意图。26.图10为本发明实施例中相位变化示意图。27.图11为本发明实施例中受力后的传感器形变示意图。28.图12为本发明实施例中双曲线薄壳部分的受力参数示意图。29.图13为本发明实施例中双曲线薄壳部分取夹角为θ的微圆环示意图。30.图14为本发明实施例中微圆环部分水平方向投影图。31.图中:1-框架外壳,2-外接头,3-盘头螺钉,4-盖板,5-光纤进口,6-盖板固定螺纹孔,7-传感器固定螺纹孔,8-光纤出口,9-固定底座,10-质量块上盖,11-双曲线薄壳,12-光纤,13-光栅a,14-光栅b,15-套筒。具体实施方式32.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。33.以下结合具体实施例对本发明的具体实现进行详细描述。34.请参阅图1-6,本发明实施例提供的一种高灵敏度分布式光纤加速度传感器,所述高灵敏度分布式光纤加速度传感器包括:35.外壳组件;36.传感器检测机构,所述传感器检测机构呈三个不同的方位分布在所述外壳组件内,用于实现全方位的测量;37.其中,传感器检测机构包括有形变模块和光栅检测模块,所述形变模块与所述外壳组件相连接,形变模块上设置有光栅检测模块。38.在传感器检测机构受到向上的拉力或向下的压力的时候,会使形变模块产生一定的形变量,此时位于形变模块上的光栅检测模块会随着形变模块产生的形变量而发生距离变化,通过距离的变化数据,得到相位的变化,从而了解到传感器外部振动的大小,且通过传感器检测机构呈三个不同的方位分布在所述外壳组件内,可实现全方位的测量,达到大量程,宽频率,高灵敏度的分布式三维冲击振动测量,从而满足振动测量的要求。39.在本发明的一个实施例中,请参阅图1和图2,所述外壳组件包括:40.框架外壳1,用于固定传感器检测机构;41.盖板4,所述盖板4通过盖板固定螺纹孔6与所述框架外壳1可拆卸连接;以及42.光纤进口5和光纤出口8,所述光纤进口5和光纤出口8分别开设于所述框架外壳1的两侧,并与所述传感器检测机构相配合设定,且所述光纤进口5和光纤出口8上均安装有外接头2。43.请参阅图3,所述传感器检测机构的数量为三套,三套传感器检测机构分别通过传感器固定螺纹孔7与所述框架外壳1可拆卸连接,且三套所述传感器检测机构分别朝向框架外壳1的上下、前后和左右三个方位摆放。44.请参阅图3和图4,所述形变模块包括:45.固定底座9,所述固定底座9通过盘头螺钉3与所述外壳组件可拆卸连接;46.双曲线薄壳11,所述双曲线薄壳11固定安装在所述固定底座9上;以及47.质量块上盖10,所述质量块上盖10位于所述双曲线薄壳11的另一端上。48.请参阅图3和图4,所述光栅检测模块包括:49.光纤12,所述光纤12缠绕在所述双曲线薄壳11上;以及50.光栅a13和光栅b14,所述光栅a13和光栅b14分别与所述光纤12的两端相连接,并通过胶结剂与所述双曲线薄壳11相连接。51.请参阅图4,所述双曲线薄壳11为弹性材料,双曲线薄壳11上缠绕的光纤12具有预拉伸量。52.光纤加速度传感器是由双曲线薄壳11、光纤12、光栅a13和光栅b14构成,在双曲线薄壳11的外表面上缠绕光纤12,并且两端通过胶结剂固定,保证光纤12有一定的预拉伸量。如图11所示,当传感器受到振动时,会产生一个力f,若传感器受到向下的压力时候,会使传感器发生变形,使得双曲线薄壳11的直径会减小;若传感器受到向上的拉力的时候,也会使传感器发生变形,使得双曲线薄壳11的直径会增加。无论是产生向下或者向上的变形,双曲线薄壳11的直径都会发生变化,在其表面上缠绕的光纤12长度也会发生变化,使得光栅a13和光栅b14之间的距离发生变化,通过距离的变化数据,得到相位的变化,从而了解到传感器外部振动的大小。53.高灵敏度光纤加速度传感器是可以用于一维的测量,如图7所示,也可用于多维的测量,使用三个传感器结构,分别朝着上下、前后和左右三个方位摆放,做成一个传感器整体,从而实现全方位的测量,达到大量程,宽频率,高灵敏度的分布式三维冲击振动测量,从而满足振动测量的要求。光纤12从高灵敏度光纤加速度传感器左端进外接头2和光纤进口5进入,经过三个传感器结构,从右端经光纤出口8和外接头2离开,形成一个测量回路。54.高灵敏度光纤加速度传感器的检测原理为:光纤由光纤芯和外壳组成,研究人员通常通过将光纤与杂质混合形成波导,使光纤的折射率超过外壳中的折射率。我们最常用的光纤光栅用于光纤的这一特性,因为纤芯对紫外辐射有敏感度,当在光纤上,紫外线激光束在光纤上辐射时,轴向周期性折射调制形成fbg。光纤用于传输光束,没有任何东西与能够成功通过所有光波的光束混合,如果上面显示的是光栅,那么当满足其光波的光线通过,如果它不满足选择要求,就会筛选掉需要通过的光线,如果传感器安装在测量仪器上,那么通过这个原理可以观察光波的变化,然后计算输出装置的变形,总之,光纤光栅传感器以这种方式滤除光线,找到光线变化与实测变化之间的关系,使我们能够计算出所需的物理测量,如图8所示;55.在初试状态下,光栅1与光栅2之间的距离为l,当光纤受到向外拉伸的力时,则会使光栅1与光栅2之间的距离发生变化,光栅之间就会产生相对位移δl,最终光栅1与光栅2之间的距离变为l+δl,如图9所示;56.当传感器中的两光栅距离发生变化的时候,所产生的干涉波相位也会发生变化,如图10所示。57.因此,当光栅1与光栅2之间的距离为l时,相位是而当光栅1与光栅2之间的距离变为l+δl时,相位则是58.光纤光栅的相位调制:59.光纤振动检测干涉技术基于相位调制原理,即当两个相邻uwfbg之间的光纤受到外部环境变化的影响时,由于泊松、光弹和应变的影响,光纤的直径、长度和折射率会发生一定的变化。这些变化也会改变探头的光相位。探头的光被传输到长度为l的光纤后,相位也会有一定的延迟,如下:60.φ=βlꢀꢀ(1-1)61.其中,β是光纤的传播常数。当探测光的相位变化由环境变化引起时,相位变化量为:[0062][0063]上式中,n为纤芯的折射率、α为纤芯半径。根据上式,我们还可以知道影响相位的三个主要因素是光纤长度的变化、纤芯折射率的变化和纤芯直径的变化。纤芯直径和折射率对相位的影响比光纤长度的影响小得多,在分析中可以忽略。由此可得:[0064][0065]由此可知,探测光的相位变化与室外环境中振动信号引起的光纤变化量成正比,因此可以使用相位变化检测方法来获取监测区域内的振动信息。[0066]传感器结构关系:[0067]由图4和11可知,光纤间光栅长度l与双曲线结构d之间的关系:[0068]l=ndπꢀꢀ(2-1)[0069]当双曲线结构产生变形后,此时光纤间光栅长度变化量δl与双曲线结构直径变化量δd的关系:[0070]δl=nδdπꢀꢀ(2-2)[0071]由公式(3-1)和(3-2)得:[0072][0073]传感器灵敏度分析:[0074]如图12-14所示,取夹角为θ的微圆环(梯形环);[0075]传感器外半径为:[0076][0077]薄壁结构厚度为:[0078]h=h sinθꢀꢀ(3-5)[0079]传感器高度为:[0080]cosθ·dh=dh1ꢀꢀ(3-6)[0081]弧长和弧度的关系:[0082]dh=r·dθꢀꢀ(3-7)[0083]所以:[0084]dh1=rcosθ·dθꢀꢀ(3-8)[0085]其微圆环的横截面积为:[0086]a=π[(r+h)2-r2]=πh(2r+h)ꢀꢀ(3-9)[0087]然后将(3-4)和(3-5)代入(3-9)得:[0088]a=πhsinθ[d+2r(1-cosθ)+hsinθ]ꢀꢀ(3-10)[0089]对图3-4所示,有公式:[0090][0091]任一微元,其受力均为f,[0092]其应变:[0093][0094]其中dy为竖直方向变形层,dh1为其高度。[0095]高度为:[0096]cosθ·dh=dh1ꢀꢀ(3-13)[0097]弧长和弧度的关系:[0098]dh=r·dθꢀꢀ(3-14)[0099]所以:[0100]dh1=rcosθ·dθꢀꢀ(3-15)[0101]则:[0102][0103][0104]对上述微梯形圆环其水平方向与竖直方向变形应有以下关系:[0105][0106]所以:[0107][0108][0109]由(3-20)得:[0110][0111]最后可得灵敏度:[0112][0113]将(1-3)(2-3)和(3-20)带入上式:[0114][0115]传感器谐振频率分析:[0116]由图11所示,当受到力f时,无论是向上还是向下,双曲线型薄壁结构都会产生变形,记变形量为δl。此时可得:[0117]f=kδlꢀꢀ(4-1)[0118]将(3-17)带入(4-1)得[0119][0120]故固有频率为:[0121][0122]加速度计算:[0123]主要是为了测量振动时产生的加速度,通过传感器的工作原理和传感器的灵敏度和固有频率的计算,将(3-21)带入可得:[0124][0125]在本发明的一个实施例中,请参阅图5和图6,所述外壳组件和传感器检测机构的数量为若干个,并呈阵列分布,且相邻传感器机构之间通过光纤12相连接,光纤12上套设有套筒15,所述套筒15与所述外壳组件相连接。[0126]通过高灵敏度光纤加速度传感器采用多个进行连接,形成阵列,能够进行全方位的测量,满足所需环境以及条件下的测量,更加方便的被人使用,也能够更好的满足人们的要求。[0127]需要说明的是,在本发明中,除非另有明确的规定和限定,术语“滑动”、“转动”、“固定”、“设有”等术语应做广义理解,例如,可以是焊接连接,也可以是螺栓连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。[0128]此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。









图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!




免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

相关内容 查看全部