发电;变电;配电装置的制造技术1.本公开属于电力电子技术领域,具体涉及一种用于电能路由器功率逆变电路的模型预测电压控制方法。背景技术:2.本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。3.电能路由器与电网、区域微网、分布式发电系统互联,实现信息流和电能流的高度融合,是能源互联网中的核心枢纽,对于保障能源战略安全意义重大。其中,电能路由器的交流端口是构建与交流源(或交流负荷)连接通道的关键装置,多以具有输出电能质量高和结构简易的lc型功率逆变拓扑作为硬件电路。因此,lc型功率逆变拓扑的有效控制对于实现交流电互联互通意义重大。4.据发明人了解,现有的针对lc型功率逆变电路的模型预测电压控制方法中,其离散模型的系数多为指数或者三角函数形式,占用大量计算资源,影响交流端口的动态性能。此外,现有模型预测电压控制方法需要电容电压、电感电流、负荷/电压电流等类型繁多的传感器,降低了功率密度和系统可靠性。另外,现有模型预测的评估框架中,一个控制周期内每评估一个候选矢量需进行一次模型预测计算以得到拟输出电容电压,进而与参考电压比较寻找最优解。导致一个控制周期内候选矢量评估过程需要多次进行模型预测计算,不利于快速评估,进一步增加对高性能数字处理芯片的依赖,不利于工程应用。因此电能路由器功率逆变电路的控制存在可靠性差、控制繁琐、计算资源大的难题亟待解决。技术实现要素:5.为了解决上述问题,本公开提出了一种用于电能路由器功率逆变电路的模型预测电压控制方法,提升电能路由器交流端口的lc型功率逆变电路控制性能,根据lc型功率逆变电路的状态方程构建简化离散模型,降低变量个数,从而避免繁杂的模型计算,大幅降低传感器数量;重构电能路由器交流端口的模型预测评估框架,提出预测前置方法,使得一个控制周期内仅需一次模型预测计算,极大的减少了的模型预测在每次评估中的计算量。6.根据一些实施例,本公开的方案提供了一种用于电能路由器功率逆变电路的模型预测电压控制方法,采用如下技术方案:7.一种用于电能路由器功率逆变电路的模型预测电压控制方法,包括:8.获取电能路由器功率逆变电路的时域状态方程;9.对所获取的时域状态方程进行离散化处理,得到功率逆变电路的离散模型;10.抵消所得到的离散模型中的电感电流预测值,得到离散模型的期望输出电压方程;11.对所得到的期望输出电压方程进行电流预测值的近似等价,得到基于期望输出电压的简化离散模型,计算功率逆变电路输出电压的期望值;12.根据所得到的输出电压的期望值,构建候选矢量成本函数;13.评估所构建的候选矢量成本函数,得到候选矢量的最小值;14.根据所得到的候选矢量的最小值,跟踪输出电压的期望值,实现电能路由器的电压控制。15.作为进一步的技术限定,通过基尔霍夫定律获取电能路由器功率逆变电路的时域状态方程,其在α-β参考坐标系下的表达式为:[0016][0017]其中,i是电感电流,v是电容电压,vi是输出电压,io是负载电流,l为电感,c为电容。[0018]进一步的,采用后向欧拉离散方法对所获取的时域状态方程进行离散化处理,得到功率逆变电路的离散模型,其在α-β参考坐标系下的表达式为:[0019][0020]其中,ts是控制周期;x(k)代表x变量在k时刻的值,x(k+1)代表x变量在k+1时刻的值,其中,x表示vαβ、iαβ、ioαβ或viαβ;iαβ、vαβ、viαβ和ioαβ分别为在α-β参考坐标系下的电感电流、电容电压、输出电压和负载电流。[0021]进一步的,利用消元法将功率逆变电路的离散模型中的电感电流预测值iαβ(k+1)抵消掉,得到含有5个变量的功率逆变电路的离散方程,其在α-β参考坐标系下的表达式为:[0022][0023]其中,为期望输出电压,为参考电容电压,iαβ、vαβ、viαβ和ioαβ分别为在α-β参考坐标系下的电感电流、电容电压、输出电压和负载电流。[0024]进一步的,用电容电流替代电感电流与负载电流的差值,对所得到的期望输出电压方程进行电流预测值的近似等价,得到基于期望输出电压的简化离散模型,其在α-β参考坐标系下的表达式为:[0025][0026]进一步的,所述参考坐标系不局限于α-β参考坐标系、d-q参考坐标系和a-b-c参考坐标系。[0027]作为进一步的技术限定,所述输出电压的期望值与所述候选矢量均进行评估循环。[0028]作为进一步的技术限定,期望值与参考值线性相关,跟踪参考值可等效为跟踪期望值;因此,为实现逆变电路对期望值的跟踪,所构建的候选矢量成本函数为:[0029][0030]其中,vcan(k+1)为候选矢量。[0031]作为进一步的技术限定,输出期望值与参考值线性相关,逆变电路对参考值的跟踪可等效为对输出期望值的跟踪;当成本函数对应的最优矢量作用到逆变电路时,逆变电路输出值最接近输出期望值,即跟踪参考值的效果最佳。[0032]作为进一步的技术限定,评估候选矢量的作用效果,即比较候选矢量对应的成本函数大小;选取对应成本函数最小,作用效果最佳的矢量为最优矢量;将所得到的最优矢量作用到逆变电路,使其输出电压跟踪输出电压期望值,实现电能路由器的电压控制;其中,所述输出电压期望值由参考值计算得到。[0033]与现有技术相比,本公开的有益效果为:[0034]1.本公开采用后向欧拉的离散方法能够简化电能路由器交流端口的lc型功率逆变电路离散方程,表达式的系数不含指数和三角函数形式,能够减少计算量,提升应用于电能路由器交流端口的模型预测计算速度。[0035]2.本公开中没有采用矩阵计算的方式,而是通过消元法将两个离散方程联立得到一个变量更少的离散方程,简化了计算的复杂程度,方法简单可靠。[0036]3.本公开中当前负载电流值(或当前微电网电流值)近似代替负载电流预测值(或微电网电流预测值),可以省略掉预测值的计算过程,进一步提升电能路由器交流端口的模型预测的计算速度。[0037]4.本公开基于简化模型预测方法,前电感电流与前负载电流值(或当前微电网电流值)的差值由当前电感电流值替代,将离散模型的变量减少至4个,得到的基于期望输出电压的离散模型极大的简化了离散形式。[0038]5.本公开在一个控制周期内,基于电能路由器交流端口的候选矢量评估过程仅计算一次lc型功率逆变电路的输出电压期望值,即在由候选矢量产生的输出电压值与期望值比较前计算,而不是直接参与候选矢量产生的电容电压值与期望电容电压值比较时计算。因此,输出电压的期望值计算过程不参与评估循环,极大的减少了评估过程中的计算量。[0039]6.本公开在离散域下,基于lc型功率逆变电路的简化预测模型和优化的模型预测评估框架,实现最优逆变输出电容电压的最优控制,适用于数字控制器,这对电能路由器交流端口的应用具有很大的意义。附图说明[0040]构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。[0041]图1是本公开实施例中的电能路由器交流端口lc型功率逆变电路的模型预测电压控制方法的流程图;[0042]图2是本公开实施例中的电能路由器交流端口的实施例示意控制框图;[0043]图3是本公开实施例中的不同负载切换状态下的电容电流估计值的波形图;[0044]图4是本公开实施例中的评估过程示意框图;[0045]图5是本公开实施例中的电容电压波形图和负载电流波形图。具体实施方式[0046]下面结合附图与实施例对本公开作进一步说明。[0047]应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。[0048]需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。[0049]在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。[0050]实施例[0051]本公开实施例介绍了一种用于电能路由器功率逆变电路的模型预测电压控制方法。[0052]如图1所示的一种用于电能路由器功率逆变电路的模型预测电压控制方法,包括:[0053]步骤s01:基于电能路由器交流端口的lc型功率逆变电路的状态方程,经离散化得到lc型功率逆变电路的离散模型;[0054]步骤s02:利用消元法将lc型功率逆变电路的离散模型中的电感电流预测值抵消掉;[0055]步骤s03:将当前负载电流值(或当前微电网电流值)近似等价为负载电流预测值(或微电网电流预测值),整理得到基于期望输出电压的离散模型;[0056]步骤s04:电容电流值的测量采用数字观测器检测,减少传感器数量,优化成本并提升电能路由器的性能。经过理得到基于期望输出电压的简化离散模型;[0057]步骤s05:在评估过程中,首先计算lc型功率逆变电路输出电压的期望值。然后评价输出电压的期望值与候选矢量的最小值,实现最优逆变输出的电容电压的控制。[0058]作为一种或多种实施方式,如图2所示,在步骤s01中,根据基尔霍夫定律得到lc型功率逆变电路的状态方程,其表达形式如下[0059][0060]其中,i是电感电流,v是电容电压,vi是输出电压,io是负载电流(或微电网电流),l为电感,c为电容。[0061]采用后向欧拉离散方法离散lc型功率逆变电路的状态方程,得到了离散模型,其在α-β参考坐标系下的表达形式如下[0062][0063]其中,ts是控制周期,x(k)代表x变量(x=vαβ,iαβ,ioαβ,viαβ)在k时刻的值,x(k+1)代表x变量在k+1时刻的值。[0064]作为一种或多种实施方式,在步骤s02中,利用消元法将lc型功率逆变电路离散模型中的电感电流预测值iαβ(k+1)抵消掉。经过整理后得到含有5个变量的lc型功率逆变电路离散方程,其在α-β参考坐标系下的表达式如下[0065][0066]其中,为期望输出电压,为参考电容电压。[0067]作为一种或多种实施方式,在步骤s03中,负载电流值(或微电网电流值)在一个控制周期内变化较缓慢。为简化电流ioαβ(k+1)的预测计算,将负载电流预测值(或微电网电流预测值)ioαβ(k+1)近似等价为当前负载电流值(或当前微电网电流值)ioαβ(k)。经过整理后得到简化的lc型功率逆变电路离散方程。[0068]作为一种或多种实施方式,在步骤s04中,电感电流iαβ与负载电流预测值(或微电网电流预测值)iαβ差值可以等效为电容电流icαβ,其在α-β参考坐标系下的表达式如下[0069]icαβ(k)=iαβ(k)-ioαβ(k)[0070]其中,icαβ(k)为第k时刻的电容电流。[0071]因此,在一个控制周期内,将电容电流带入基于期望输出电压的离散模型,得到简化的离散方程,其在α-β参考坐标系下的表达式如下[0072][0073]为优化成本和提升系统性能,电容电流值的测量由电流传感器检测改为数字观测器检测,以卡尔曼数字观测器为例,其表达式如下[0074][0075][0076][0077][0078][0079]其中,为状态向量,f为转移矩阵,b为噪声输入矩阵,u为过程噪声,为估计误差方差矩阵,q为系统过程噪声的对称非负定方差矩阵,k为滤波增益矩阵,h为观测矩阵,r为观测噪声的对称正定方差矩阵,为状态估计,z为系统的观测序列,为估计误差方差矩阵,i为单位矩阵。[0080]如图3所示的采用数字观测器的电容电流波形图,由仿真结果可得出,数字观测器得到电容电流波形与传感器测量波形基本一致。[0081]作为一种或多种实施方式,在步骤s05中,为实现电能路由器端口电压的最优控制,本实施例的模型预测电容电流检测过程如图4所示。在一个控制周期内,电容电压参考值参与到基于期望电压的lc型功率逆变电路简化模型,进而计算出输出电压的期望值,即期望值与参考值线性相关。对电能路由器端口电压参考值的跟踪可等效为对逆变电路期望值的跟踪,因此,构建候选矢量与期望值的成本函数cf,其表达式如下:[0082][0083]其中,vcan(k+1)为候选矢量。[0084]评估候选矢量作用到逆变电路时产生的电压值与期望值的差值,即成本函数cf。最后选取最小成本函数min(cf)对应的矢量为最优候选矢量,使逆变电路实现对输出电压期望值的跟踪,,进而实现电能路由器端口电压参考值的跟踪。[0085]作为一种或多种实施方式,一个控周期内,输出电压的期望值仅计算一次;输出电压的期望值与候选矢量参与评估循环。[0086]如图5所示的电能路由器端口输出电压波形和电流,由仿真结果可以看到,采用本实施例方法的lc型功率逆变电路输出电容波形能得到很好地调节,电能路由器端口工作正常。[0087]通过以上仿真结果可知,本实施例所提出的一种用于电能路由器功率逆变电路的模型预测电压控制方法可有效提升电能路由器的性能。[0088]本实施例采用后向欧拉离散简化方法、负载电流(微网电流)预测值近似、数字观测器估计、精简评估框架等方法简化lc型功率逆变电路的模型预测控制过程,在较低的计算资源需求下实现lc型功率逆变电路电容电压的有效控制。本实施例能够极大简化lc型功率逆变电路的模型预测电压控制方法,实施方法简单可靠,具有较高的研究和应用意义。[0089]可以理解的,本实施例是一个实时优化的过程,基于简化的lc型功率逆变电路模型预测方法,在不同状态下实现电能路由器端口电压的最优调节,提升电能路由器的性能。[0090]可以理解的,本实施例中所有的计算不局限于α-β参考坐标系、d-q参考坐标系、a-b-c参考坐标系,本公开不局限于特定的微电网实际需求,不局限于lc型功率逆变拓扑,适用于微电网单相母线和三相母线形式。同时,本实施例不局限于功率逆变拓扑直流侧电源形式,适用于用低压、中压、高压等不同场合,具有较强的扩展性和实用性,此外,本实施例不局限于功率逆变拓扑的逆变状态,同样适用于整流状态。[0091]上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
用于电能路由器功率逆变电路的模型预测电压控制方法
作者:admin
2022-08-31 12:17:26
674
关键词:
发电;变电;配电装置的制造技术
专利技术
- 下一篇: 一种稳定杆装配夹具的制作方法
- 上一篇: 一种超大倾角下运带式输送装置的制作方法