计算;推算;计数设备的制造及其应用技术1.本发明涉及一种基于差分扰动的个性化三维空间位置隐私保护方法,属于位置服务与信息安全领域。背景技术:2.随着大型建筑的建设,室内定位加速了lbs应用的发展,为用户提供了更加便捷的服务,如应急服务导航等。qyresearch调研显示,2021年全球室内定位系统lbs市场规模大约为240亿元(人民币),预计2028年将达到1121亿元,2022-2028期间年复合增长率(cagr)为22.0%。与此同时,用户位置隐私问题已成为最重要的问题之一。3.然而,大多数位置隐私保护机制都侧重于二维开放区域位置保护。当用户的位置数据包含一个高度信息,即三维地理位置时,大多数现有的二维平面机制将无法抵御对抗性推理攻击。一方面,如果直接在三维空间和室内环境中使用现有的二维位置隐私保护机制,则高度信息不会被隐藏,这可能会泄露用户的活动性质或身份。例如,假设一个用户在一个大型购物中心的不同楼层中时,不同的楼层可能代表用户的偏好和兴趣。攻击者可以根据这些信息向用户发送相关的消费服务信息或垃圾邮件。因此,室内位置隐私保护的研究至关重要。另一方面,不同地点的不同用户可能有不同的隐私需求,如何满足用户个性化的隐私需求也很重要。4.近年来,一些三维位置保护方案使用k-匿名,同态加密和本地差分隐私等技术,但是,基于k-匿名的位置隐私保护机制,依赖于可信第三方,一旦第三方服务器瘫痪或者被攻击就会导致用户隐私存在泄露威胁。此外,基于加密的位置隐私保护机制将用户位置信息完全隐匿,这导致用户无法获得相应的位置服务,因此不适用于位置服务应用场景。而基于扰动的位置隐私保护机制可以在用户端本地实现信息隐藏,可避免对可信、安全服务器的依赖。现有的大多数扰动方案都是为了在位置隐私保护性能和lbs实用性之间找到更好的平衡。技术实现要素:5.针对现有技术的不足之处,提供一种基于差分扰动的个性化三维空间位置隐私保护方法,步骤简单,灵活高校,能够有效保护大型室内等三维空间中位置服务场景下的用户的位置隐私安全。6.为实现上述技术目的,本发明的一种基于差分扰动的个性化三维空间位置隐私保护方法,其步骤如下:7.步骤1:根据用户对自身隐私需求情况选择不同的隐私保护方案,若用户需要保护个人位置隐私,则直接将用户的真实位置发送给lbs服务器,若用户需要保护个人位置隐私,则根据用户选择不同的位置期望推断误差位置以实现用户真实位置的多种隐私处理方案;8.步骤2:多种隐私处理方案首先利用三维空间地理的不可区分性考虑全局隐私预算,采用三维拉普拉斯加噪机制对用户的真实位置进行扰动;9.步骤3:利用期望推断误差结合三维空间地理不可区分性,推导攻击者期望推断误差的理论边界;10.步骤4:基于三维hilbert curve最小距离搜索算法通过边界误差限定后搜索的位置保护集定义为个性化位置保护集φ;11.步骤5:应用位置扰动机制对个性化位置保护集φ生成一个概率分布矩阵,通过设定不同的隐私参数em,推断攻击者对用户位置的推断误差下界以限制攻击者的推断范围,并结合隐私预算实现不同的隐私需求的个性化调整,用户端利用指数机制生成扰动位置的概率分布矩阵向lbs服务器发布伪位置,从而实现位置隐私的保护。12.进一步,利用下式获取三维拉普拉斯加噪机制的概率密度函数:[0013][0014]基于三维空间中的地理不可区分机制,三维空间中所有位置x和y满足参数∈g地理不可区分机制:[0015][0016]用户使用三维拉普拉斯扰动机制将实际位置x映射到伪位置x′,概率分布为f;d3(x,y)为三维空间中位置x与空间中另一个位置y之间的欧氏距离,三维空间地理不可区分性确保在三维空间中地理相接近的两个位置生成的假位置具有相似的概率分布,参数∈g由隐私预算∈和以用户为中心的范围决定:设∈=∈g·d,其中d是球体保护区域的直径,球体保护区域的所有位置都有相似的概率分布,并在地理上无法区别;将直径为d的球体保护区域定义为保护区,球体保护区域内的所有位置即为保护位置集,对于任何在位置保护集中的两个位置x和位置y都满足∈地理不可区分性差分隐私:[0017][0018]其中,∈是隐私预算,三维拉普拉斯扰动机制使三维空间中所有伪位置满足∈的地理不可区分性,其中x为用户真实位置,y定义为三维空间中另一个位置,x′为扰动位置,x′不在保护区中,为真实位置的可能的集合,为扰动后伪位置的集合。[0019]进一步,利用三维空间地理不可区分性保证三维空间中的任意两个地理相近的位置生成的扰动位置的概率分布是相似的,隐私预算∈和以用户位置的分布通过中心的半径为d3(x,x′)的球体保护区域决定,利用半径为d3(x,x′)的球体空间内的用户位置使用户的真实位置得到隐匿。[0020]进一步,步骤3中具体包括以下步骤:[0021]步骤3.1:通过计算作为条件期望的攻击者推断位置x′,从而计算出攻击者推断误差:其中,pr(x|x′)是攻击者观测到伪位置x′生成真实位置x的后验概率分布,表达式为:[0022][0023]步骤3.2:将三维空间地理不可区分性与期望推断误差结合以限定攻击者推断出用户位置的推断误差范围,通过设置不同的误差边界以实现用户个性化隐私保护需求。[0024]进一步,步骤3.2中具体步骤如下:[0025]步骤3.2.1:考虑在攻击者拥有先验信息π的情况下,最坏情况是攻击者推断的用户真实位置包括在保护位置集中,得到期望推断误差下界:[0026][0027]定义参数[0028]步骤3.2.2:对于观察的伪位置得到条件期望误差exper(x′),通过期望误差下界得到如下关系式:[0029]exper(x′)≥e-∈e(φ)ꢀꢀꢀꢀꢀ(6)[0030]步骤3.2.3:引入隐私参数em,使用户可以根据自己不同的隐私需求或当前位置敏感性调整无条件预期推断误差的下界,如下式(7)所示:[0031]e(φ)≥e∈emꢀꢀꢀꢀꢀꢀꢀꢀ(7)[0032]步骤3.2.4:为了提高用户的位置服务质量,球体保护区域的直径越小越好,由于d(φ)是φ的直径,因此个性化位置保护集φ中任意两个位置之间的距离都小于或等于d(φ)即根据公式(7)得到:[0033][0034]进一步,步骤4中具体步骤如下:[0035]步骤4.1:利用三维hilbert curve将三维空间的位置数据映射到一维值h(x),将所有可能位置映射为h(x)并进行数值排序,再把位置x按其对应的h(x)数值大小进行排序,位置x在中的序号标为r(x);[0036]步骤4.2:对于给定的用户真实位置x,按照三维曲线的搜索方向以探索x的领域空间,并找到满足公式(7)关于用户真实位置x的位置保护集的要求;[0037]具体为:设三维hilbert curve上按h(x)顺序排列的位置是x-m,x-m+1,...,x-1,x0(x0=x),x1,...,xn-1,xn,从x-m开始对每个xi寻找位置集合[xi,x-i+1,...,x0,...,xj],其中-m≤i≤0≤j≤n,该位置集合称为位置区间[xi,xj];当e([xi,xj])满足公式(7)时,该位置集合候选到位置保护集,然后重复下一个xi,当所有的xi遍历完成后,再从位置保护集列表中选择最小的集合作为位置保护集;[0038]步骤4.3:当攻击者没有获得先验知识时,h(x)的排列顺序搜索位置保护集,并将搜索范围规定为[h(x)-range,h(x)+range];若攻击者获得用户访问区域相关位置的先验知识,则将搜索范围规定为[r(x)-range,r(x)+range];[0039]步骤4.4:通过对三维hilbert curve进行空间分别旋转90°,180°,270°,针对每次旋转采用上述搜索算法以保证每个用户的真实位置x在最小距离范围内搜索隐藏真实位置的个性化保护位置集。[0040]进一步,在步骤5中利用指数机制生成扰动位置的概率分布矩阵得到伪装后的扰动位置x′,其中概率分布矩阵是:[0041][0042]其中[0043]有益效果:[0044]本方法针对大型室内等三维空间位置服务过程中不可信服务器或者获得先验知识攻击者导致的位置隐私泄露问题。将三维空间地理不可区分性与期望推断误差概念结合,基于三维hilbert curve最小距离搜索算法选择最小直径保护位置集φ,使得攻击者无法获取用户的真实位置。此外设置不同的隐私预算∈,和期望推断误差边界em能够实现用户不同情形下的隐私需求,达到服务质量与隐私的平衡效用。[0045]以后与基于k-匿名的位置隐私保护机制依赖于可信第三方服务器,若第三方服务器瘫痪或者被攻击就会导致用户隐私存在泄露威胁。此外,基于加密的位置隐私保护机制将用户位置信息完全隐匿,这导致用户无法获得相应的位置服务,因此不适用于位置服务应用场景。三维空间的地理不可区分性只考虑全局隐私预算,无法满足用户不同的隐私需求。期望推断误差以限制攻击者的推断范围,以满足不同的隐私需求。因此,本发明结合了这两种隐私保护方案的优点,通过设定不同隐私参数(em,∈)实现隐私个性化,又保证了用户的服务质量,提高了位置服务系统中的位置数据隐私与服务质量的平衡性能。附图说明[0046]图1为本发明中大型建筑等三维空间位置服务系统场景图;[0047]图2为本发明的基于差分扰动的个性化三维空间位置隐私保护方法流程示意图;具体实施方式[0048]下面结合附图对本发明的实施例做进一步说明:[0049]如图1和图2所示,本发明的基于差分扰动的个性化三维空间位置隐私保护方法将平面空间中的地理不可区分性定义扩展到了三维空间并结合期望推断误差概念实现了用户位置隐私的个性化保护。步骤如下:1.用户根据自身隐私需求选择位置隐私保护处理;2.通过三维拉普拉斯加噪机制对真实位置进行扰动;3.基于三维空间地理不可区分性与期望推断误差的关系,推导理论边界;4.基于三维hilbert curve最小距离搜索算法选择个性化位置保护集φ;5.针对位置保护集应用指数机制生成一个概率分布矩阵释放伪位置。本发明通过设置不同隐私预算和期望推断误差边界能满足用户在不同三维空间场景下隐私需求,平衡位置隐私与服务质量。具体步骤如下:[0050]步骤1:用户选择自身隐私需求情况选择不同的位置隐私处理,若用户不需要保护个人位置隐私,则直接将真实位置发送给lbs服务器;[0051]步骤2:基于三维空间地理不可区分性,采用三维拉普拉斯加噪机制对真实位置进行扰动;三维拉普拉斯加噪机制概率密度函数定义如下:[0052][0053]三维空间中的地理不可区分机制,三维空间中所有位置x和y满足∈g-地理不可区分机制如下:[0054][0055]其中用户使用位置扰动机制将实际位置x映射到伪位置x′,概率分布为f。d3(x,y)为三维空间中位置x与位置y之间的欧氏距离。三维空间地理不可区分性确保在三维空间中地理相接近的两个位置生成的假位置具有相似的概率分布。参数∈g由隐私预算∈和以用户为中心的范围决定,通常,设∈=∈g·d,其中d是球体保护区域的直径。球体内的所有位置都有相似的概率分布,在地理上无法区别。我们将这个球体区域定义为保护区,其中的所有位置称为保护位置集。对于任何在位置保护集中的两个位置x和y满足∈-差分隐私:[0056][0057]其中,∈是隐私预算,扰动机制使得三维空间中所有其中,∈是隐私预算,扰动机制使得三维空间中所有满足∈-地理不可区分性,其中为真实位置的可能的集合,为扰动位置的可能集合,x为用户真实位置,x′为扰动位置。[0058]步骤3:基于三维空间地理不可区分性与期望推断误差的关系,推导理论边界;[0059]具体步骤如下:[0060]步骤(1):计算条件期望推断误差其中是攻击者推断位置,pr(x|x′)是观测到伪位置x′生成真实位置x的后验概率分布。定义如下:[0061][0062]步骤(2):将三维空间地理不可区分性与期望推断误差结合限定攻击者推断误差的范围,通过设置不同的误差边界实现用户个性化隐私保护需求。为了提高用户的服务质量,保护位置集的直径d(φ)越小越好。由于d(φ)是φ的直径,因此任意两个位置之间的距离都小于或等于d(φ)即步骤(2)中具体步骤如下:[0063]步骤1):考虑在攻击者拥有先验信息π的情况下,最坏情况是推断位置包括在保护位置集中,然后得到期望推断误差下界:[0064][0065]并有[0066]步骤2):对于观察的伪位置得到条件期望误差exper(x′),通过期望误差下界得到如下关系:[0067]exper(x′)≥e-∈e(φ)ꢀꢀꢀꢀꢀ(6)[0068]步骤3):引入隐私参数em,即用户可以根据自己不同的隐私需求或当前位置敏感性设置的无条件预期推断误差的下界,根据(8)有:[0069]e(φ)≥e∈emꢀꢀꢀꢀꢀꢀꢀꢀ(7)[0070]步骤4):为了提高用户的服务质量,球体区域的直径越小越好。由于d(φ)是φ的直径,因此任意两个位置之间的距离都小于或等于d(φ)即根据公式(9)可以得到:[0071][0072]步骤4:基于三维hilbert curve最小距离搜索算法选择个性化位置保护集φ;[0073]步骤4中通过以下4个步骤获得最小直径保护位置集:[0074]步骤(1):三维hilbert curve可以将三维空间的位置数据映射到一维值h(x)。然后将所有可能位置的h(x)进行排序,再把真实位置x按其对应的h(x)进行排序,位置x在中的序号称为r(x);[0075]步骤(2):对于给定的用户位置x,按照三维曲线的搜索方向以探索x的领域空间,并找到满足要求(7)的关于x的位置保护集,描述如下:假定在顺着三维hilbert curve上按h(x)顺序排列的位置是x-m,x-m+1,...,x-1,x0(x0=x),x1,...,xn-1,xn,从x-m开始对每个xi寻找位置集合[xi,x-i+1,...,x0,...,xj],其中-m≤i≤0≤j≤n,这个位置集合称为位置区间[xi,xj]。当e([xi,xj])满足公式(7)时,该位置集合候选到位置保护集,然后重复下一个xi。当所有的xi遍历完成后,再从位置保护集列表中选择最小的集合作为位置保护集;[0076]步骤(3):当攻击者没有获得先验知识时,h(x)的排列顺序搜索位置保护集,并将搜索范围规定为[h(x)-range,h(x)+range];若攻击者获得用户访问区域相关位置的先验知识,则将搜索范围规定为[r(x)-range,r(x)+range];[0077]步骤(4):通过对三维hilbert curve进行空间旋转以保证每个位置x在最小距离范围内搜索隐藏真实位置的保护位置集。[0078]步骤5:应用位置扰动机制对保护位置集生成一个概率分布矩阵发布伪位置。针对获得保护位置集φ应用位置扰动机制生成一个概率分布矩阵,得到伪位置x′。其中扰动机制为指数机制,它的概率分布函数是:[0079][0080]其中
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
一种基于差分扰动的个性化三维空间位置隐私保护方法与流程
作者:admin
2022-08-31 11:33:19
540
关键词:
计算;推算;计数设备的制造及其应用技术
专利技术
- 下一篇: 一种波形弹簧用钢带的生产方法与流程
- 上一篇: 一种核电站主泵用温度传感器的制作方法