测量装置的制造及其应用技术1.本发明涉及隧道工程技术领域,特别是涉及一种非对称高应力隧道爆破振动测试方法及系统。背景技术:2.地应力是存在于地层中未受工程活动扰动的天然应力,由于多次构造运动、地表沉积、剥蚀的耦合作用,深部工程岩体三维原岩应力场复杂。深埋隧道多赋存于不断变化的三维高地应力(最大主应力σ1》中间主应力σ2》最小主应力σ3)、长期强烈构造活动,且地应力主方向与隧道坐标系通常不重合。隧道横断面,常常出现应力非对称分布,洞周应力集中区围岩易破坏,能量更高,受到掌子面爆破影响更加显著,为隧道稳定性控制的关键部位。3.随着掌子面的推进,高应力隧道掌子面后方围岩切向应力逐渐增大、径向应力减小,应力差增大,围岩逐渐处于不利应力状态。此时,深埋隧道掌子面爆破开挖时,爆破应力波引起围岩振动,极易诱发岩体破裂的发生。当局部应力集中程度足够高时,甚至会导致岩爆等动力灾害。4.如今由于钻爆法施工具有经济优势、且对大型机械的依赖程度较低、只需要简单机械即可施工、在各种地质条件下均能够有效施工等特点,钻爆法在大部分公路隧道和山岭隧道的开挖中应用相当普遍。经验表明,掌子面后方隧道横断面所受最大主应力连线的垂直方向围岩处形成应力集中区,该应力集中区更易受掌子面爆破施工应力波振动的影响,为爆破振动影响监测的重要部位。5.目前,对掌子面爆破振动的监测均采用几何对称的方式,没有考虑非对称高应力隧道应力集中区的特点,往往监测部位与应力集中区易破坏部位不一致,不能有效评估围岩稳定性。二是高应力隧道开挖后,应力集中区围岩内部会发生损伤,承载能力下降,能量积聚与释放特性也不同,发生深部灾害岩体类型也不同。洞壁多为脆性拉破坏,随着围岩内部与洞壁距离的增加,围岩内部由脆性拉破坏逐渐过渡到延性剪破坏,对爆破振动效应不同。现有的方法爆破振动测试时钻孔位置和深度均未考虑非对称高应力引起的应力集中区,不能有效地监测爆破振动损伤围岩引起的破裂。技术实现要素:6.针对上述现有爆破振动测试方法未考虑深埋隧道非对称高应力引起的应力集中区围岩,掌子面爆破易触发该部位围岩破坏失稳。本发明提供一种非对称高应力隧道爆破振动测试方法及系统,相对于现有技术,该方法及系统能够重点监测应力集中区不同径向深度的爆破振动速度、加速度,提高隧道开挖施工的安全与施工效率,保证施工人员和设备的安全。7.本发明的技术方案为:8.本发明第一方面提供一种非对称高应力隧道爆破振动测试方法,在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域分别固定三轴振动传感器,通过每个三轴振动传感器监测其所在位置处的爆破振动速度和加速度。9.根据所述的非对称高应力隧道爆破振动测试方法,该方法包括下述步骤:10.步骤1:确定非对称高应力隧道掌子面后方应力集中区位置及应力集中区围岩内部的不同径向深度;11.步骤2:在掌子面后方应力集中区设置多个由洞壁向围岩内部延伸的钻孔;12.步骤3:分别在每个钻孔的所述不同径向深度区域固定三轴振动传感器;13.步骤4:采集并储存每个三轴振动传感器测得的其所在位置处的爆破振动速度和加速度。14.根据所述的非对称高应力隧道爆破振动测试方法,基于隧道围岩的地质资料,根据非对称原岩地应力分布与隧道横断面几何特征,确定非对称高应力隧道掌子面后方应力集中区位置以及应力集中区围岩内部的不同径向深度。15.根据上述任一项所述的非对称高应力隧道爆破振动测试方法,所述不同径向深度为应力集中区围岩内部表层、表层向内、较深层三处深度。16.根据所述的非对称高应力隧道爆破振动测试方法,在掌子面后方应力集中区的中间位置间隔10m设置1#、2#、3#、4#、5#五个钻孔,且仅为一排布置。17.根据所述的非对称高应力隧道爆破振动测试方法,第一个所述钻孔距离掌子面2倍洞跨。18.根据所述的非对称高应力隧道爆破振动测试方法,所述在每个钻孔的所述不同径向深度区域固定三轴振动传感器的方法为:利用钻孔碎渣和水泥、水混合形成封堵材料,并利用泵将封堵材料输送到钻孔以封堵三轴振动传感器,使三轴振动传感器与隧道围岩内部成为一体,以保证三轴振动传感器与隧道围岩振动速度、加速度一致。19.本发明第二方面提供一种非对称高应力隧道爆破振动测试系统,该系统包括多个三轴振动传感器;所述多个三轴振动传感器固定在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域,每个所述三轴振动传感器用于监测其所在位置处的爆破振动速度和加速度。20.如上所述的非对称高应力隧道爆破振动测试系统,该系统还包括云平台,用于采集存储每个三轴振动传感器测得的其所在位置处的爆破振动速度和加速度。21.本发明的有益效果为:22.本发明方法及系统重点监测非对称高应力隧道掌子面后方应力集中区不同径向深度处的爆破振动速度、加速度,通过对监测的数据进行分析,控制爆破的装药量、进尺、雷管段数、段差、炮孔布置等参数,必要时对开挖方法进行调整。也可根据不同径向深度的爆破振动速度、加速度,确定相应的支护参数,包括围岩注浆圈厚度、锚杆长度,提高隧道开挖施工的安全与施工效率,提高隧道开挖施工的安全与施工效率,保证施工人员和设备的安全。附图说明23.图1为本实施方式非对称高应力隧道爆破振动测试方法的流程示意图;24.图2为非对称高应力隧道应力分布图;25.图3为非对称高应力隧道应力分布图;26.图4为本实施方式非对称高应力隧道掌子面后方应力集中区位置示意图;27.图5为本实施方式应力集中区围岩内部不同径向深度位置示意图;28.图6为本实施方式三轴振动传感器安装位置示意图;29.图7为本实施方式非对称高应力隧道爆破振动测试系统的结构示意图。30.其中σ1、σ2、σ3分别为非对称最大主应力、中间主应力、最小主应力;1#、2#、3#、4#、5#分别为5个钻孔位置;a、b、c分别应力集中区由洞壁至围岩内部3个不同径向深度即表层、表层向内、较深层;·表示三轴振动传感器的安装位置。具体实施方式31.下面将结合附图和实施例,对本发明作进一步描述。32.本发明第一方面提供一种非对称高应力隧道爆破振动测试方法,该方法为:在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域分别固定三轴振动传感器,通过每个三轴振动传感器监测其所在位置处的爆破振动速度和加速度。图1为本实施方式非对称高应力隧道爆破振动测试方法的具体流程示意图。如图1所示,所述非对称高应力隧道爆破振动测试方法,具体如下:33.步骤1:基于隧道围岩的地质资料,根据非对称原岩地应力分布与隧道横断面几何特征,确定非对称高应力隧道掌子面后方应力集中区位置以及应力集中区围岩内部的不同径向深度;34.在本实施方式中,首先基于隧道围岩的地质资料,确定隧道开挖过程中地应力的分布情况如图2、3所示。然后根据地应力分布情况,与隧道几何形状的空间关系,得到如图4所示的非对称高应力隧道掌子面后方应力集中区。最后基于隧道围岩的地质资料并进行相关研究,确定如图5所示的应力集中区围岩内部表层a点、表层向内b点、较深层c点三处深度。35.步骤2:在非对称高应力隧道掌子面后方应力集中区设置多个由洞壁向围岩内部延伸的钻孔;36.本实施方式中在隧道爆破施工时,如图6所示在掌子面后方应力集中区间隔10m设置1#、2#、3#、4#、5#五个钻孔,仅为一排布置,位于掌子面后方应力集中区的中间位置,第一个钻孔距离掌子面2倍洞跨。钻孔直径稍大于三轴振动传感器直径如0.11m-0.13m,钻孔深度至较深层后一定深度如1m;37.步骤3:分别在每个钻孔的所述不同径向深度区域固定三轴振动传感器;由于非对称高应力隧道掌子面后方应力集中区内围岩振动更易受掌子面爆破施工振动影响,因此本实施方式定制大量程三轴振动传感器,监测围岩内部三个方向的爆破振动速度,加速度。在本实施方式按照图6所示由内向外利用定制的接管把定制的大量程三轴振动传感器分别安装到每个钻孔表层a点、表层向内b点、较深层c点处。利用钻孔碎渣和水泥、水混合形成封堵材料,并利用泵将封堵材料输送到钻孔以封堵三轴振动传感器,使三轴振动传感器与隧道围岩内部成为一体,以保证三轴振动传感器与隧道围岩振动速度、加速度一致;所述封堵材料凝固七天后与应力集中区围岩波阻抗一致。38.步骤4:采集储存每个三轴振动传感器测得的其所在位置处的爆破振动速度和加速度;39.本实施方式掌子面爆破施工过程中,利用云平台远程控制三轴振动传感器设置相关参数,采集储存掌子面施工爆破对掌子面后方应力集中区内部不同深度处三个方向的爆破振动速度、加速度。40.为了直观地反映出非对称高应力隧道掌子面后方应力集中区的损伤破坏程度,基于云平台采集储存的数据包括每个三轴振动传感器位置处的三个方向的爆破振动速度和加速度、相应传感器与掌子面的水平距离和该传感器所处位置的径向深度、掌子面爆破相关参数,建立一种非对称高应力隧道的爆破振动传播模型。41.该非对称高应力隧道的爆破振动传播模型利用如下公式表达:[0042][0043]式中:v代表爆破振动速度的计算值,cm/s;q代表引起爆破振动的炸药量,kg;r代表爆距,m;k、a——分别为非对称高应力隧道掌子面后方应力集中区围岩的物理力学参数及地质条件有关的系数和衰减指数;[0044]上述r通过如下公式计算得到:[0045][0046]其中的l为掌子面与三轴振动传感器的水平距离,d为洞壁与三轴振动传感器的垂直距离即钻孔深度。[0047]上述爆破振动传播模型建立后,可以求得非对称高应力隧道掌子面爆破施工时后方围岩应力集中区不同位置处的爆破振动速度计算值,并根据三轴振动传感器测得的围岩产生裂隙的临界振动速度,确定应力集中区的损伤破坏范围,进而评估非对称高应力隧道应力集中区围岩稳定性,进而确定不同水平距离、不同径向深度处的支护参数,为开挖和支护提供更准确的科学依据。[0048]可见通过上述爆破振动速度测试方法能够为评价非对称高应力隧道爆破施工时的应力集中区安全性评估及不同径向深度的支护参数提供理论基础。[0049]本发明还提供一种非对称高应力隧道的爆破振动测试系统,该系统包括多个三轴振动传感器;所述多个三轴振动传感器固定在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域,每个所述三轴振动传感器用于监测其所在位置处的爆破振动速度和加速度。具体如上所述:首先确定非对称高应力隧道掌子面后方应力集中区位置及应力集中区围岩内部的不同径向深度,然后在掌子面后方应力集中区设置多个由洞壁向围岩内部延伸的钻孔,在本实施方式中所述钻孔设置在掌子面后方的应力集中区内,如图6所示在掌子面后方应力集中区的中间位置间隔10m设置1#、2#、3#、4#、5#五个钻孔,仅为一排布置,第一个钻孔距离掌子面2倍洞跨,每个钻孔直径稍大于三轴振动传感器直径如0.11m-0.13m,深度至较深层后一定深度如1m;再然后分别在每个钻孔的所述不同径向深度区域采用封堵材料固定三轴振动传感器,所述封堵材料由钻孔碎渣和水泥、水混合形成。[0050]在起爆前,如图7所示,利用云平台控制三轴振动传感器设置时间、传感器位置等相关参数;每次爆破振动测试完成后,利用云平台采集储存各个三轴振动传感器所在位置不同方向的爆破振动数据,并详细记录地应力大小和方向、开挖断面的大小和形状、爆破时间、爆破位置、炮孔布置、炮孔数量、装药量、装药结构、雷管段别等信息。[0051]利用三轴振动传感器采集到的掌子面爆破对后方应力集中区产生的爆破振动速度、加速度,直接反映三轴振动传感器所在位置处的应力集中区内部的爆破振动速度、加速度。[0052]利用云平台记录的每次爆破振动数据(每个三轴振动传感器所在位置处的三个方向的爆破振动速度和加速度、相应传感器的水平距离和径向深度、掌子面爆破参数),建立一种非对称高应力隧道的爆破振动传播模型。所述爆破振动传播模型建立后,可以计算非对称高应力隧道掌子面爆破施工时后方围岩应力集中区不同位置处的爆破振动速度,并根据围岩产生裂隙的临界振动速度,确定应力集中区的损伤破坏范围,进而评估非对称高应力隧道应力集中区围岩稳定性,进而确定不同水平距离、不同径向深度处的支护参数,为开挖和支护提供更准确的科学依据。[0053]本发明方法及系统重点监测非对称高应力隧道掌子面后方应力集中区不同径向深度处的爆破振动速度、加速度,通过对监测的数据进行分析,优化爆破装药量、进尺、段数、段差、炮孔布置等参数,必要时对开挖方法进行调整。也可根据不同径向深度的爆破振动速度、加速度,确定相应的支护参数,包括围岩注浆圈厚度、锚杆长度,提高隧道开挖施工的安全与施工效率,保证施工人员和设备的安全。[0054]上述对本发明的一个实施例进行了详细说明。显然,上述实施例仅仅是本发明的一部分实施例,而不是全部的实施例;上述实施例仅用于解释本发明,并不构成对本发明保护范围的限定。基于上述实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,也即凡在本技术的精神和原理之内所作的所有修改、等同替换和改进等,均落在本发明要求的保护范围内。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
一种非对称高应力隧道爆破振动测试方法及系统
作者:admin
2022-08-31 10:07:38
502
关键词:
测量装置的制造及其应用技术
专利技术
- 下一篇: 基于数据流特征的比较函数识别系统及识别方法
- 上一篇: 一种双壳层硅碳负极材料、其制备方法和应用与流程