控制;调节装置的制造及其应用技术1.本发明涉及无人机监控技术领域,尤其涉及一种基于规则启发式的多蚁群搜索潜艇目标协同路径优化方法。背景技术:2.近年来,多无人机(unmanned aerial vehicle,uav)协同在监视、搜索、目标跟踪、损伤评估等领域得到了广泛的应用。多uav协同搜索目标是其中的重要研究内容。搜索是情报侦察的重要手段,而采用多uav协同搜索能够彻底的实现对任务区域的侦察,更好的发现目标和获取情报信息。3.目前的蚁群方法主要解决的是搜索常规的静态和动态目标,但面对海域环境复杂、任务区域有威胁且目标之间有一定的关联规则的情况下,传统的多蚁群方法或智能方法在解决此类问题时,常有搜索时间长,搜索效率低等缺点,关联规则驱动的多蚁群搜索方法,是在传统的蚁群方法上进行了多重改进,引入了关联规则作为启发信息,面向复杂且有威胁的任务区域的搜索方法。技术实现要素:4.根据现有技术存在的问题,本发明公开了一种基于规则启发式的多蚁群搜索潜艇目标协同路径优化方法,具体包括如下步骤:5.s1:采用栅格法对无人机的搜索区域进行划分,引入关联规则库,设计潜艇目标适用的关联规则函数,建立关联规则驱动的目标概率图模型以及关联规则驱动的概率图更新规则;6.s2:对多无人机协同搜索潜艇目标的发现收益、无人机的执行代价、碰撞代价、威胁躲避代价进行加权求和,设计整体的搜索效益函数;7.s3:采用基于规则启发式的多蚁群算法对多无人机进行协同路径优化设计:8.s31:根据搜索环境的初始信息以及潜艇目标的初始分布,初始化各蚁群的信息素浓度,其中每个蚂蚁种群分别对应一架无人机,并为无人机构造搜索路径;9.s32:根据关联规则设计启发函数,将启发函数作为启发式信息,设计基于规则启发的路径选择策略,每个种群的蚂蚁根据规则启发的路径选择策略选择下一个栅格,当达到最大步长时保存搜索路径;10.s33:当各种群的蚂蚁完成一次路径规划后保存搜索路径,根据搜索效益函数选出搜索效益最大者对应的搜索路径作为无人机的搜索路径,无人机在搜索过程中,如果判断出下一个栅格有威胁,则蚁群对此条路径上有威胁的区域按照躲避威胁的信息素更新方式更新,如果判断没有威胁,则继续搜索所有符合关联规则的潜艇目标,直至搜索任务结束。11.在搜索区域内,潜艇目标依据自身执行任务的不同会以单独或编队的形式存在,且不同任务下的潜艇目标编队形式也不相同,不同的编队也具有不同的分布规则,基于此,建立潜艇目标的关联规则库如下:12.s={s1,s2,...,si,...sn}13.其中s表示关联规则库,si代表其中一种任务场景下潜艇目标的分布规则;14.根据关联规则库,建立潜艇目标适用的关联规则函数:15.ck(s)=[ε1fk(s1) ε2fk(s2) ... εifk(si) ... εnfk(sn)]t[0016]其中,ck(s)表示k时刻的潜艇目标适用的关联规则,fk(si)表示在k时刻处于关联规则si下的潜艇分布函数;εi(i=1,2,...,n)表示二值权重,即εi∈{0,1},且满足ε1+ε2+…+εi+…+εn=1;当εi=1时,对应ε1=ε2=,...,=εi-1=εi+1=εn=0,表示当前的关联规则函数选择为fk(si)。[0017]进一步的,将无人机的栅化任务区域定义为三种形式:高概率区域ωhp、低概率区域ωlp和不确定概率区域ωmp,根据三种概率形式设计如下关联规则驱动的概率图更新规则:[0018]栅格(m,n)无访问:[0019]pmn(k+1)=τ1pmn(k)[0020]其中,pmn(k+1)表示第k刻栅格(m,n)的概率,pmn(k+1)表示第k+1时刻栅格(m,n)的概率,τ1∈[0,1]为动态信息因子;[0021]栅格(m,n)有访问,且fg=1时:[0022][0023]其中,pd∈[0,1]为探测概率,pf∈[0,1]为虚警概率,若探测到栅格(m,n)中的目标,且该目标适用关联规则库s,则以栅格(m,n)所匹配的关联规则库si更新概率图,适用该关联规则库的其它栅格的概率更新如下,以栅格(o,p)的概率为例:[0024]高概率区域ωhp:[0025][0026]其中,pop(k+1)表示第k+1时刻栅格(o,p)的概率;τhp为概率增强因子,shp为符合高概率区域的栅格个数;[0027]低概率区域ωlp:[0028][0029]其中τlp为概率减弱因子,slp为符合低概率区域的栅格个数;[0030]不确定区域ωmp:[0031]pop(k+1)=τ2pmn(k)[0032]其中,τ2∈[0,1]为动态信息因子;[0033]栅格(m,n)有访问,且fg=0时:[0034][0035]若探测到栅格(m,n)中的目标,且该目标同样适用关联规则库s,则其它栅格概率更新采用高概率区域、低概率区域和不确定概率区域三种方式更新。[0036]进一步的,在确保无人机安全的前提下,以最小的燃油、最少的时间为搜索代价完成搜索任务,所述整体的搜索效益函数采用如下方式设计:[0037]将潜艇目标发现收益jp定义为:[0038][0039]执行代价为多无人机执行符合关联规则si的下一个栅格所消耗的时间和燃油,执行代价ec具体定义为:[0040][0041]其中,si(k)为无人机第k时刻的状态,vi(k)为无人机第k时刻的速度;[0042]将碰撞代价cc定义为:[0043][0044]其中,表示无人机在k时刻搜索高、低、不确定概率栅格的路径时,第i架无人机优先选择不同于第j架无人机的航路,c为碰撞系数;[0045]无人机搜索路径中需要躲避威胁,威胁躲避代价wc定义为,[0046][0047]其中,w为躲避威胁代价系数,l(k)为k时刻无人机与威胁中心的距离,lsafe(k)为k时刻的安全距离,且lsafe≥l-κrt,其中rt为威胁半径,κ>1为半径随机系数,l为无人机与威胁中心的距离,lsafe为安全距离,整体的搜索效益函数:[0048]j(k)=ω1jp(k)-ω2ec(k)-ω3cc(k)-ω4wc(k)[0049]其中,j(k)为整体收益,0≤ωi<1(i=1,2,3,4)为权重。[0050]进一步的,对多无人机进行协同路径优化设计时:[0051]s31:根据搜索环境先验信息和初始潜艇目标分布进行信息素初始化:[0052][0053]其中s为初始符合关联规则的栅格,τ0为常数,该初始化函数将信息素初值与初始的潜艇目标信息进行关联,[0054]s32:根据设计的关联规则驱动的概率图,对每只蚂蚁的状态转移规则重新定义,将关联规则驱动每只蚂蚁从当前栅格选择下一个栅格,第t次迭代中,第l个种群的蚂蚁从栅格i到栅格j的状态转移规则如下:[0055][0056]uk表示关联规则驱动下选择的栅格,表示其它蚂蚁子群在栅格j处残留信息素的值,λij(t)表示在关联规则si下,栅格i和栅格j的潜艇目标概率值,α表示在栅格选择中信息素的重要程度,β表示搜索收益的相对重要程度,γ表示其它群体信息素的抑制作用,σ表示关联驱动下,对栅格j搜索的增强因子,ηj(t)表示启发式信息,具体定义为:[0057][0058]shp(t)、slp(t)分别为第t迭代后符合关联规则的高概率栅格个数和低概率栅格个数;[0059]对关联规则驱动的信息素进行更新,根据潜艇目标分布初始化函数c0(s)搜索,若搜索到潜艇目标,则根据关联规则si搜索,根据此搜索过程,动态地修改信息素更新方式。[0060]所述对关联规则驱动的信息素进行更新时首先是根据目标分布初始化函数c0(s)搜索,若搜索到目标,则根据关联规则si搜索,根据此搜索过程蚁群按照第一信息素更新方式更新,若搜索过程判断到下一栅格有威胁,则蚁群采用第二信息素更新方式更新;[0061]第一信息素更新方式为:[0062][0063]其中,τj(t+1)和τj(t)分别是更新前后栅格j内信息素的值,σ为增强因子,ρ(t)为信息素挥发系数,通过对信息素挥发系数ρ(t)进行改进从而提高算法在搜索符合关联规则的潜艇目标时的收敛精度[0064][0065]其中,tmax是算法的最大迭代次数,在算法的初始阶段,ρ(t)较大,蚁群算法快速搜索到较优路径,随着迭代的进行,符合关联规则的栅格逐渐增加,ρ(t)逐渐减小,此时扩大搜索空间从而避免陷入局部收敛,δτj(t+1)是信息素更新值,更新如下:[0066][0067]其中,为第t+1次迭代后,第l个种群的蚂蚁在栅格j内留下的信息素,定义为:[0068][0069]其中,表示路径优化中蚂蚁走过的栅格shp和slp的路径,l0表示未发现潜艇目标之前蚂蚁走过的路径,q为信息素更新常数,u常数;j为搜索潜艇目标的收益,j0为初始阶段搜索潜艇目标收益,w0、w1为权重;[0070]第二信息素更新方式为:[0071]在信息素每次更新时,需要判断下一个栅格的威胁程度,若栅格威胁程度大,则需要减弱下一个栅格的信息素浓度:[0072]τjk(t+1)=τjk(t)-δτjk(t)[0073]其中,δτjk(t)是栅格j内信息素的减量,更新方式如下:[0074]δτjk(t)=δτolsafe(t)τjk(t)[0075]其中,δτo为信息素衰减系数,lsafe(t)为第t次迭代时,uav距离威胁的安全距离。[0076]由于采用了上述技术方案,本发明提供的一种基于规则启发式的多蚁群搜索潜艇目标协同路径优化方法,该方法充分利用了任务海域中目标存在的特点,无人机群根据当前搜索到的目标实时匹配关联规则库,有重点的搜索部分栅格,缩小了搜索空间,并且在建立的关联规则驱动的目标概率图模型中,设计了动态的概率图更新规则,有效的保证了执行任务所需信息的实时性;有针对性的设计了新的蚁群信息素初始化、状态转移规则及信息素更新方式,使得本方法在面对不同的目标类型时的适应度、收敛性、搜索效率都有极大的提高。附图说明[0077]为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。[0078]图1为本发明中规则启发式多蚁群搜索方法的流程图[0079]图2为本发明中关联规则驱动的概率图[0080]图3为本发明搜索仿真图具体实施方式[0081]为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:[0082]如图1所示的一种基于规则启发式的多蚁群搜索潜艇目标协同路径优化方法,包括:[0083]s1:采用栅格法对无人机的搜索区域进行划分,引入关联规则库,设计潜艇目标适用的关联规则函数,建立关联规则驱动的目标概率图模型以及关联规则驱动的概率图更新规则;[0084]s2:对多无人机协同搜索潜艇目标的发现收益、无人机的执行代价、碰撞代价、威胁躲避代价进行加权求和,设计整体的搜索效益函数;[0085]s3:采用基于规则启发式的多蚁群算法对多无人机进行协同路径优化设计:[0086]s31:根据搜索环境的初始信息以及潜艇目标的初始分布,初始化各蚁群的信息素浓度,其中每个蚂蚁种群分别对应一架无人机,并为无人机构造搜索路径;[0087]s32:根据关联规则,设计了启发函数,将启发函数当作启发式信息,设计基于规则启发的路径选择策略,每个种群的蚂蚁根据规则启发的路径选择策略选择下一个栅格,当达到最大步长时保存搜索路径;[0088]s33:当各种群的蚂蚁完成一次路径规划后保存搜索路径,根据搜索效益函数选出搜索效益最大者对应的搜索路径作为无人机的搜索路径,无人机在搜索过程中,如果判断出下一个栅格有威胁,则蚁群对此条路径上有威胁的区域,按照躲避威胁的信息素更新方式更新,如果判断没有威胁,则继续搜索所有符合关联规则的潜艇目标,直至搜索任务结束;[0089]进一步的,在搜索区域内,潜艇目标依据自身执行任务的不同,可能以单独或者编队的形式存在,且不同任务下的潜艇目标编队形式也不相同,不同的编队也具有不同的分布规则,基于此,建立潜艇目标的关联规则库如下:[0090]s={s1,s2,...,si,...sn}[0091]其中s表示关联规则库,si代表其中一种任务场景下潜艇目标的分布规则;[0092]根据关联规则库,建立潜艇目标适用的关联规则函数:[0093]ck(s)=[ε1fk(s1) ε2fk(s2) ... εifk(si) ...εnfk(sn)]t[0094]其中,ck(s)表示k时刻的潜艇目标适用的关联规则,fk(si)表示在k时刻处于关联规则si下的潜艇分布函数;εi(i=1,2,...,n)表示二值权重,即εi∈{0,1},且满足ε1+ε2+…+εi+…+εn=1;当εi=1时,对应ε1=ε2=,...,=εi-1=εi+1=εn=0,表示当前的关联规则函数选择为fk(si)。[0095]在发现部分潜艇目标后,根据潜艇目标适用的关联规则函数ck(s)更新其他潜艇目标所在的位置坐标,由于潜艇目标的运动具有不确定性,基于关联规则函数仅能以一定的概率给出潜艇目标所在位置,因此,将无人机的栅化任务区域定义为三种形式:高概率区域ωhp、低概率区域ωlp和不确定概率区域ωmp,搜索过程中以关联规则si来描述高、低概率区域的变化,如图2所示。[0096]1)初始阶段,根据先验信息分布潜艇目标存在的高、低概率区域,如图2中的(a)所示;[0097]2)若多无人机发现潜艇目标则依据关联规则si,对潜艇目标概率实时更新,例如,发现一个潜艇目标a后,根据潜艇编队特性,则a周边栅格存在其它潜艇目标的概率会增加,更新过程如图2中(b)所示;[0098]3)若多无人机发现二个潜艇目标b后根据关联规则si+1,两潜艇目标连线以及中垂线上的部分栅格概率会升级为高概率区域hp,相应的调整目标概率图如图2中(d)所示.[0099]4)多无人机依据规则库持续搜索,直至发现区域内所有潜艇目标,搜索任务结束。[0100]进一步的,根据三种概率形式设计如下关联规则驱动的概率图更新规则:[0101]栅格(m,n)无访问:[0102]pmn(k+1)=τ1pmn(k)[0103]其中,pmn(k+1)表示第k刻栅格(m,n)的概率,pmn(k+1)表示第k+1时刻栅格(m,n)的概率,τ1∈[0,1]为动态信息因子;[0104]栅格(m,n)有访问,且fg=1时:[0105][0106]其中,pd∈[0,1]为磁探仪探测概率,pf∈[0,1]为传感器虚警概率,若探测到栅格(m,n)中的潜艇目标,且该潜艇目标适用关联规则库s,则以栅格(m,n)所匹配的关联规则库si更新概率图,适用该关联规则库的其它栅格的概率更新如下,以栅格(o,p)的概率为例;[0107]高概率区域ωhp:[0108][0109]其中,pop(k+1)表示第k+1时刻栅格(o,p)的概率;τhp为概率增强因子,shp为符合高概率区域的栅格个数。[0110]低概率区域ωlp:[0111][0112]其中τlp为概率减弱因子,slp为符合低概率区域的栅格个数;[0113]不确定区域ωmp:[0114]pop(k+1)=τ2pmn(k)[0115]其中,τ2∈[0,1]为动态信息因子;[0116]栅格(m,n)有访问,且fg=0时:[0117][0118]若探测到栅格(m,n)中的潜艇目标,且该潜艇目标同样适用关联规则库s,则其它栅格概率采用高概率区域、低概率区域和不确定概率区域三种方式更新。[0119]进一步的,多无人机协同搜索潜艇目标的过程有多方面的限制条件,是在确保无人机安全的前提下,以最小的燃油、最少的时间为搜索代价,完成搜索任务,整体的搜索效益函数具体设计如下:[0120]1)潜艇目标发现收益jp可以定义为:[0121][0122]2)执行代价为多无人机执行符合关联规则si的下一个栅格所消耗的时间和燃油,执行代价ec具体定义为:[0123][0124]其中,si(k)为无人机第k时刻的状态,vi(k)为无人机第k时刻的速度;[0125]3)为避免搜索过程中无人机航路点重合,将碰撞代价cc定义为:[0126][0127]其中,表示无人机在k时刻搜索高、低、不确定概率栅格的路径时,第i架无人机优先选择不同于第j架无人机的航路,c为碰撞系数。[0128]4)无人机搜索路径中需要躲避威胁,威胁躲避代价wc可以定义为,[0129][0130]其中,w为躲避威胁代价系数,l(k)为k时刻无人机与威胁中心的距离,lsafe(k)为k时刻的安全距离,且lsafe≥l-κrt,其中rt为威胁半径,κ>1为半径随机系数,l为无人机与威胁中心的距离,lsafe为安全距离。整体的搜索效益函数:[0131]j(k)=ω1jp(k)-ω2ec(k)-ω3cc(k)-ω4wc(k)[0132]其中,j(k)为整体收益,0≤ωi<1(i=1,2,3,4)为权重。[0133]进一步的,s3具体采用如下方式:[0134]s31:根据搜索环境先验信息和初始潜艇目标分布进行信息素初始化:[0135][0136]其中s为初始符合关联规则的栅格,τ0为常数,该初始化函数将信息素初值与初始的潜艇目标信息进行关联,[0137]s32:基于规则启发的路径选择策略:根据设计的关联规则驱动的概率图,对每只蚂蚁的状态转移规则重新定义,将关联规则驱动每只蚂蚁从当前栅格选择下一个栅格,第t次迭代中,第l个种群的蚂蚁从栅格i到栅格j的状态转移规则如下:[0138][0139]uk表示关联规则驱动下选择的栅格,表示其它蚂蚁子群在栅格j处残留信息素的值,λij(t)表示在关联规则si下,栅格i和栅格j的潜艇目标概率值,α表示在栅格选择中信息素的重要程度,β表示搜索收益的相对重要程度,γ表示其它群体信息素的抑制作用,σ表示关联驱动下,对栅格j搜索的增强因子,ηj(t)表示启发式信息,具体定义为:[0140][0141]shp(t)、slp(t)分别为第t迭代后符合关联规则的高、低概率栅格的个数;[0142]对关联规则驱动的信息素进行更新,根据潜艇目标分布初始化函数c0(s)搜索,若搜索到潜艇目标,则根据关联规则si搜索,根据此搜索过程,动态地修改信息素更新方式。[0143]s33:1)第二信息素更新方式方式:[0144][0145]其中,τj(t+1)和τj(t)分别是更新前后栅格j内信息素的值,σ为增强因子,ρ(t)为信息素挥发系数;传统的信息素挥发系数为不变的值,如果设置过大,易陷入局部最优解,影响算法全局搜索能力,如果设置过小,搜索随机性增强,收敛速度慢。为了提高算法在搜索符合关联规则的潜艇目标时的收敛精度,改进如下:[0146][0147]其中,tmax是算法的最大迭代次数。可以看出,随着搜索的进行,符合关联规则的栅格是时刻变化的,信息素挥发系数也随之变化,在算法的初始阶段,ρ(t)较大,蚁群算法可以快速搜索到较优路径,提高全局搜索能力。随着迭代的进行,符合关联规则的栅格逐渐增加,ρ(t)逐渐减小,此时可以扩大搜索空间,避免陷入局部收敛。δτj(t+1)是信息素更新值,更新如下:[0148][0149]其中,为第t+1次迭代后,第l个种群的蚂蚁在栅格j内留下的信息素,定义为:[0150][0151]其中,表示路径优化中蚂蚁走过的栅格shp和slp的路径,l0表示未发现潜艇目标之前,蚂蚁走过的路径;q为信息素更新常数;u常数;j为搜索潜艇目标的收益,j0为初始阶段搜索潜艇目标收益,w0、w1为权重。[0152]2)第二信息素更新方式为:[0153]信息素的每次更新,都需要判断下一个栅格的威胁程度,若栅格威胁程度大,则需要减弱下一个栅格的信息素浓度。[0154]τjk(t+1)=τjk(t)-δτjk(t)[0155]其中,δτjk(t)是栅格j内信息素的减量,如下:[0156]δτjk(t)=δτolsafe(t)τjk(t)[0157]其中,δτo为信息素衰减系数,lsafe(t)为第t次迭代时,uav距离威胁的安全距离。[0158]以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
基于规则启发式的多蚁群搜索潜艇目标协同路径优化方法
作者:admin
2022-08-02 22:40:31
338
关键词:
控制;调节装置的制造及其应用技术
专利技术