发布信息

基于改进最大类间方差法的骨料形貌表征方法和系统

作者:admin      2022-10-26 07:26:03     647



计算;推算;计数设备的制造及其应用技术1.本发明涉及检测技术领域,尤其是指一种基于改进最大类间方差法的骨料形貌表征方法和系统。背景技术:2.骨料是指混凝土及砂浆中起骨架和填充作用的粒状材料,是沥青混凝土、水泥混凝土和颗粒基层的重要组成部分。骨料的形态特征包括形状、角度和表面纹理,形态特征对其力学性能和使用性能有重要影响,这些形态特征影响骨料相互作用以及骨料和粘合剂之间的连接强度。因此,骨料形态特征的量化对于更好地控制骨料质量和改善沥青混凝土和水泥混凝土的性能至关重要。3.现有技术中,研究测量骨料形态特征的方法主要分为两类:直接测量法和间接测量法。直接测量法采用肉眼观测或是数据图像分析的测量方法,如使用游标卡尺测量骨料的三维尺寸,直接测量法存在试验时间很长、试验量很大、主观性较大的缺点。间接测量法根据骨料的孔隙率或是抗剪强度推算其形状特征,其测量对象是骨料的颗粒形状和宏观纹理特征。但是,无论是直接手工测量方法还是间接测量方法,都难以及时准确地测量骨料的形态学特征。4.为了获取骨料的形态学特征,通过使用各种计算算法分析骨料的数字图像的研究越来越多,数字成像技术已被广泛用于骨料形貌表征。现有的基于数字图像的骨料形状特征的评价方法有:伊利诺伊大学图像分析仪(uiaia)采用图像侵蚀-膨胀法研究骨料的表面粗糙度,首先将骨料颗粒的图像采用先侵蚀后膨胀方法进行处理,采用表面参数st值表征边界上的表面粗糙特征,表面越粗糙,边界信息损失越严重,图像处理前后面面积的相对差异st值越大,对与骨料轮廓获取误差率过高。第二代骨料图像分析仪(aimsii)采用小波变换法对骨料图像进行多尺度分解获得骨料颗粒的表面纹理特征,但是骨料表面纹理越粗糙、表面粗糙度参数也越大。有采用不兼容的计算理论来量化数字图像中的形状、角度和表面纹理,但是这种方法有时会导致无法比较的形态特征值。还有其他一些成像技术基于从数字图像计算出的聚集表面的2d或半3d坐标来分析形态特征,但是由于二维或半三维骨料坐标无法准确表示真实骨料的实际三维表面,这些方法的精度有限。5.综上所述,现有的数字图像分析技术大都通过形状索引进行三维(3d)骨料表面纹理重塑,对骨料轮廓的提取方法误差率较高、精度有限。与此同时,当前的成像技术使用不同的图像采集方法和尺寸的不同定义,没有标准的形态学参数可用于客观比较不同聚集成像分析技术的测量结果。技术实现要素:6.为此,本发明所要解决的技术问题在于克服现有技术中的不足,提供一种基于改进最大类间方差法的骨料形貌表征方法和系统,可以快速、批量化地建立高精度的骨料三维空间模型。7.为解决上述技术问题,本发明提供了一种基于改进最大类间方差法的骨料形貌表征方法,包括以下步骤:8.s1:获取骨料的三维定位数据,根据所述三维定位数据得到骨料的尺寸大小;9.s2:获取骨料的三维图像数据,通过不完全beta函数法、模拟退火算法和最大类间方差法从所述三维图像数据中提取骨料的三维轮廓视图;10.s3:根据骨料的尺寸大小和三维轮廓视图得到骨料的三维空间模型。11.作为优选的,所述获取骨料的三维定位数据,根据所述三维定位数据得到骨料的尺寸大小,具体为:12.将骨料放置在传送装置上,在传送装置侧面相距第一距离的两处分别设置感应器;13.在任意一个感应器沿传送装置传送方向后端的三维方向上各设置一个测距仪,当感应器检测到有骨料通过后,每个所述测距仪测量骨料表面各点到自身的距离得到三维定位数据,根据所述三维定位数据得到骨料表面各点到传送装置的垂直距离以及骨料表面各点间的距离,整合距离得到骨料的尺寸大小。14.作为优选的,所述获取骨料的三维图像数据,具体为:15.在沿传送装置传送方向后端没有安装测距仪的另一个感应器的沿传送装置传送方向后端的三维方向上各设置一个图像采集器,当感应器检测到有骨料通过后,每个所述图像采集器分别采集骨料的图像得到所述三维图像数据。16.作为优选的,所述通过不完全beta函数法、模拟退火算法和最大类间方差法从所述三维图像数据中提取骨料的三维轮廓视图,具体为:17.使用最大类间方差法将三维图像数据按照灰度特性分成目标c0和背景cb两部分,计算所述目标c0的平均灰度强度μ0、所述背景cb的平均灰度强度μb和图像的总体平均灰度强度μt;18.通过不完全beta函数法和模拟退火算法对平均灰度强度μ0、μb和μt进行修正,增强目标和背景之间的对比度,将目标从背景中提取出来获得骨料的所述三维轮廓视图。19.作为优选的,所述使用最大类间方差法将三维图像数据按照灰度特性分成目标c0和背景cb两部分,计算所述目标c0的平均灰度强度μ0、所述背景cb的平均灰度强度μb和图像的总体平均灰度强度μt,具体为:20.将图像的像素表示为由0到255的灰度强度,使用直方图归一化将灰度强度像素数转化为概率分布:[0021][0022]其中,pi为灰度强度为i的像素概率,ni表示灰度强度为i的像素数,n为像素总数;[0023]计算所述目标c0所在图像像素的概率ω0和所述背景cb所在图像像素的概率ωb:[0024][0025][0026]其中,k为区分所述目标c0和所述背景cb两类像素的阈值;[0027]计算所述目标c0的平均灰度强度μ0、所述背景cb的平均灰度强度μb和图像的总体平均灰度强度μt:[0028][0029][0030]μt=ω0μ0+ωbμb。[0031]作为优选的,所述通过不完全beta函数法和模拟退火算法对平均灰度强度μ0、μb和μt进行修正,增强目标和背景之间的对比度,将目标从背景中提取出来获得骨料的所述三维轮廓视图,具体为:[0032]构建灰度值分布曲线的变换算子f(u):[0033][0034]其中,0≤u≤1,gij表示图像像素(i,j)处的灰度强度,l为所有灰度强度中的最小值,u为所有灰度强度中的最大值;γ()是伽马函数,α和β是模型参数,且满足α》0,β》0;[0035]建立模拟退火算法的目标函数为:[0036][0037]其中,其中为类内方差,为类内方差,为类间方差,[0038]对模型参数α和β进行迭代更新直到η最大,得到此时的模型参数值α和β;[0039]根据k=λ+1、计算出此时的模型参数值α和β对应的k,使用此时的k将图像分成目标和背景两部分;[0040]比较此时的模型参数值α和β,当α《β时使用变换算子f(u)将所述目标c0的平均灰度强度μ0增强为所述图像的总体平均灰度强度μt,当α》β时使用变换算子f(u)将所述目标c0的平均灰度强度μ0减弱为所述图像的总体平均灰度强度μt;在增强所述目标和背景的对比度后,将目标从背景中提取出来获得骨料的所述三维轮廓视图。[0041]作为优选的,所述根据骨料的尺寸大小和三维轮廓视图得到骨料的三维空间模型时,使用的方法为最小值原则,具体为:[0042]组装骨料的俯视图轮廓图、侧视图轮廓图和正视图轮廓图三张三维轮廓视图得到正交图像,[0043]根据所述骨料的尺寸大小中的骨料高度尺寸数据,按俯视图轮廓图形成大量微型柱状图向上延展进行填充;[0044]根据所述骨料的尺寸大小中的骨料宽度尺寸数据,按侧视图轮廓图形成大量微型柱状图横向延展进行填充,若出现高度尺寸数据和宽度尺寸数据存在矛盾的情况,以两种数据中的最小值为准进行填充;[0045]根据所述骨料的尺寸大小中的骨料长度尺寸数据,按正视图廓图形成大量微型柱状图横向延展进行填充,若出现长度尺寸数据和高度尺寸数据、宽度尺寸数据存在矛盾的情况,以三种数据中的最小值为准进行填充,三维方向填充完后得到所述骨料的三维空间模型。[0046]本发明还提供了一种基于改进最大类间方差法的骨料形貌表征系统,其特征在于:包括传送模块、采集模块和模型分析模块,[0047]所述传送模块将骨料移动到所述采集模块处并提示所述采集模块进行数据采集,[0048]所述采集模块采集骨料的三维定位数据和三维图像数据并发送给所述模型分析模块,[0049]所述模型分析模块通过骨料的三维定位数据得到骨料的尺寸大小,通过不完全beta函数法、模拟退火算法和最大类间方差法从所述三维图像数据中提取骨料的三维轮廓视图,根据骨料的所述尺寸大小和三维轮廓视图得到骨料的三维空间模型。[0050]作为优选的,所述传送模块包括传送装置和两个感应器,所述采集模块包括三维定位数据采集模块和三维图像数据采集模块,所述三维定位数据采集模块包括三个测距仪,所述三维图像数据采集模块包括三个图像采集器、背景板和幕布,所述传送装置、背景板和幕布均为黑色;[0051]两个所述感应器分别安装在所述传送装置侧面相距第一距离的两处,在任意一个感应器沿传送装置传送方向后端的三维方向上各设置一个测距仪,当感应器检测到有骨料通过后,每个所述测距仪测量骨料表面各点到自身的距离得到三维定位数据并将所述三维定位数据发送给所述模型分析模块;[0052]在沿所述传送装置传送方向后端没有安装测距仪的另一个感应器的沿传送装置传送方向后端设有所述三维图像数据采集模块,一个图像采集器安装在所述传送装置上方,所述传送装置与传送方向平行的两侧分别对称设有所述背景板和一个图像采集器,所述传送装置上与传送方向垂直的方向设有所述幕布、沿传送装置传送方向距离所述幕布第二距离处设有一个图像采集器;当感应器检测到有骨料穿过所述幕布后,三个所述图像采集器分别采集骨料的正视图、俯视图和侧视图得到所述三维图像数据并将所述三维图像数据发送给所述模型分析模块。[0053]作为优选的,所述模型分析模块包括骨料尺寸分析模块、骨料轮廓分析模块和骨料形貌构成模块,[0054]所述骨料尺寸分析模块根据所述三维定位数据得到骨料表面各点到传送装置的垂直距离以及骨料表面各点间的距离,整合距离得到骨料的尺寸大小;[0055]所述骨料轮廓分析模块通过不完全beta函数法、模拟退火算法和最大类间方差法从所述三维图像数据中提取骨料的三维轮廓视图;[0056]所述骨料形貌构成模块根据骨料的尺寸大小和三维轮廓视图得到骨料的三维空间模型。[0057]本发明的上述技术方案相比现有技术具有以下优点:[0058]本发明通过将骨料轮廓和尺寸进行分开量化分析,之后再进行模型重塑,不需要形态学参数就可直接根据获得的骨料尺寸大小填充三维轮廓视图得到骨料三维空间模型,不需要对所获得的数据进行再分类处理,提高了建模效率;通过传送模块不断运送骨料,根据骨料的不同信息进行分开采集而无需静置,实现了自动化和动态化采集,提高了大规模骨料的形貌表征速率,可以对骨料进行批量化建模;本发明得到的骨料三维空间模型与现实骨料形貌基本一致,精确度高。附图说明[0059]为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中[0060]图1是本发明方法的流程图;[0061]图2是本发明系统的结构示意图;[0062]图3是本发明实施例中得到大理石骨料的三维轮廓视图;[0063]图4是本发明实施例中得到大理石骨料的三维轮廓视图的正交图;[0064]图5是本发明实施例中使用本发明方法得到的大理石骨料的三维空间模型和现实大理石骨料形貌的对比图。具体实施方式[0065]下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。[0066]如图1所示,本发明公开了一种基于改进最大类间方差法的骨料形貌表征方法,包括以下步骤:[0067]s1:获取骨料的三维定位数据,根据所述三维定位数据得到骨料的尺寸大小;本实施例中的三维指两两正交的x轴、y轴和z轴三个方向。[0068]将骨料放置在传送装置上,骨料随传送装置进行运动,在传送装置侧面相距第一距离的两处分别设置感应器;[0069]在任意一个感应器沿传送装置传送方向后端的三维方向上各设置一个测距仪,当感应器检测到有骨料通过后,每个所述测距仪测量骨料表面各点到自身的距离得到三维定位数据,根据所述三维定位数据得到骨料表面各点到传送装置的垂直距离以及骨料表面各点间的距离,整合骨料表面各点到传送装置的垂直距离以及骨料表面各点间的距离得到骨料的尺寸大小。[0070]s2:获取骨料的三维图像数据,通过不完全beta函数法、模拟退火算法和最大类间方差法从所述三维图像数据中提取骨料的三维轮廓视图,通过引入不完全beta函数法和模拟退火算法实现对最大类间方差法的改进。[0071]s2-1:在沿传送装置传送方向后端没有安装测距仪的另一个感应器的沿传送装置传送方向后端的三维方向上各设置一个图像采集器,当感应器检测到有骨料通过后,每个所述图像采集器分别采集骨料的图像得到所述三维图像数据。[0072]s2-2:使用最大类间方差法将三维图像数据按照灰度特性分成目标c0(即要提取的骨料)和背景cb两部分,计算所述目标c0的平均灰度强度μ0、所述背景cb的平均灰度强度μb和图像的总体平均灰度强度μt。[0073]s2-2-1:将图像的像素表示为由0到255的灰度强度,使用直方图归一化将灰度强度像素数转化为概率分布:[0074][0075]其中,pi为灰度强度为i的像素概率,ni表示灰度强度为i的像素数,n为像素总数;[0076]s2-2-2:计算所述目标c0所在图像像素的概率ω0和所述背景cb所在图像像素的概率ωb:[0077][0078][0079]其中,k为区分所述目标c0和所述背景cb两类像素的阈值;[0080]s2-2-3:计算所述目标c0的平均灰度强度μ0、所述背景cb的平均灰度强度μb和图像的总体平均灰度强度μt:[0081][0082][0083]μt=ω0μ0+ωbμb。[0084]s2-3:通过不完全beta函数法和模拟退火算法对平均灰度强度μ0、μb和μt进行修正,增强目标和背景之间的对比度,从而提高图像分割的成功率;将目标从背景中提取出来获得骨料的所述三维轮廓视图。[0085]s2-3-1:构建灰度值分布曲线的变换算子f(u):[0086][0087]其中,0≤u≤1,gij表示图像像素(i,j)处的灰度强度,l为所有灰度强度中的最小值,u为所有灰度强度中的最大值;γ()是伽马函数,不同的伽马函数运算方式定义不同的概率分布函数;α和β是模型参数,且满足α》0,β》0;[0088]s2-3-2:建立模拟退火算法的目标函数为:[0089][0090]其中,其中为类内方差,为类内方差,为类间方差,[0091]s2-3-3:对模型参数α和β进行迭代更新直到η最大(即η收敛),得到此时的模型参数值α和β;[0092]s2-3-4:根据k=λ+1、计算出此时的模型参数值α和β对应的k,使用此时的k将图像分成目标和背景两部分;[0093]s2-3-5:比较此时的模型参数值α和β,当α《β时使用变换算子f(u)将所述目标c0的平均灰度强度μ0增强为所述图像的总体平均灰度强度μt,当α》β时使用变换算子f(u)将所述目标c0的平均灰度强度μ0减弱为所述图像的总体平均灰度强度μt;[0094]s2-3-6:在增强所述目标和背景的对比度后,将目标从背景中提取出来获得骨料的所述三维轮廓视图。[0095]s3:使用最小值原则,根据骨料的尺寸大小和三维轮廓视图得到骨料的三维空间模型。[0096]s3-1:组装骨料的俯视图轮廓图、侧视图轮廓图和正视图轮廓图三张三维轮廓视图得到正交图像,[0097]s3-2:根据所述骨料的尺寸大小中的骨料高度尺寸数据,按俯视图轮廓图形成大量微型柱状图向上延展进行填充;[0098]s3-3:根据所述骨料的尺寸大小中的骨料宽度尺寸数据,按侧视图轮廓图形成大量微型柱状图横向延展进行填充,若出现高度尺寸数据和宽度尺寸数据存在矛盾的情况,以两种数据中的最小值为准进行填充;[0099]s3-4:根据所述骨料的尺寸大小中的骨料长度尺寸数据,按正视图廓图形成大量微型柱状图横向延展进行填充,若出现长度尺寸数据和高度尺寸数据、宽度尺寸数据存在矛盾的情况,以三种数据中的最小值为准进行填充;三维方向填充完后得到所述骨料的三维空间模型。[0100]如图2所示,本发明还公开了一种基于改进最大类间方差法的骨料形貌表征系统,图2中虚线上方图2(a)是系统的俯视图,虚线下方图2(b)是系统的正视图。图2中标号说明:1、骨科,2、传送装置,3、感应器,4、测距仪,5、图像采集器,6、背景板,7、幕布,8、模型分析模块。[0101]基于改进最大类间方差法的骨料形貌表征系统包括传送模块、采集模块和模型分析模块,所述传送模块将骨料移动到所述采集模块处并提示所述采集模块进行数据采集,所述采集模块采集骨料的三维定位数据和三维图像数据并发送给所述模型分析模块;所述模型分析模块通过骨料的三维定位数据得到骨料的尺寸大小,通过不完全beta函数法、模拟退火算法和最大类间方差法从所述三维图像数据中提取骨料的三维轮廓视图,根据骨料的所述尺寸大小和三维轮廓视图得到骨料的三维空间模型。[0102]所述传送模块包括传送装置和两个感应器,所述采集模块包括三维定位数据采集模块和三维图像数据采集模块,所述三维定位数据采集模块包括三个测距仪,所述三维图像数据采集模块包括三个图像采集器、背景板和幕布,所述传送装置、背景板和幕布均为黑色,黑色可以提高灰度强度,从而提高骨料轮廓的精准性。[0103]两个所述感应器分别安装在所述传送装置侧面相距第一距离的两处,本实施例中传送装置为传送带,所述感应器为红外传感器,第一距离的长度根据实际情况进行调整。在任意一个感应器沿传送装置传送方向后端的三维方向上各设置一个测距仪,本实施例中测距仪为脉冲激光测距仪,三个脉冲激光测距仪的位置分别为传送装置两侧对称两个、传送装置正上方一个。当感应器检测到有骨料通过后,每个所述测距仪测量骨料表面各点到自身的距离得到三维定位数据并将所述三维定位数据发送给所述模型分析模块。[0104]在沿所述传送装置传送方向后端没有安装测距仪的另一个感应器的沿传送装置传送方向后端设有所述三维图像数据采集模块,一个图像采集器安装在所述传送装置上方,所述传送装置侧面与传送方向平行的一侧设有所述背景板、另一侧设有第二个图像采集器,所述传送装置上与传送方向垂直的方向设有所述幕布、沿传送装置传送方向距离所述幕布第二距离处设有第三个所述图像采集器;本实施例中第二距离的长度根据实际情况进行调整,所述图像采集器为电荷耦合器件相机,与传统相机相比,电荷耦合器件相机够把光学影像转化为数字信号、有益于后续图像信号处理,同时电荷耦合器件相机体积小、重量轻、不受磁场影响、具有抗震动和抗撞击的特性。当感应器检测到有骨料通过所述幕布后,三个所述图像采集器分别采集骨料的正视图、俯视图和侧视图得到所述三维图像数据并将所述三维图像数据发送给所述模型分析模块。[0105]所述模型分析模块包括骨料尺寸分析模块、骨料轮廓分析模块和骨料形貌构成模块,所述骨料尺寸分析模块根据所述三维定位数据得到骨料表面各点到传送装置的垂直距离以及骨料表面各点间的距离,整合骨料表面各点到传送装置的垂直距离以及骨料表面各点间的距离得到骨料的尺寸大小;所述骨料轮廓分析模块通过不完全beta函数法、模拟退火算法和最大类间方差法从所述三维图像数据中提取骨料的三维轮廓视图;所述骨料形貌构成模块根据骨料的尺寸大小和三维轮廓视图得到骨料的三维空间模型。[0106]本发明通过将骨料轮廓和尺寸进行分开量化分析,之后再进行模型重塑,不需要形态学参数就可直接根据获得的骨料尺寸大小填充三维轮廓视图得到骨料三维空间模型,不需要对所获得的数据进行再分类处理,提高了建模效率;通过传送模块不断运送骨料,根据骨料的不同信息进行分开采集而无需静置,实现了自动化和动态化采集,提高了大规模骨料的形貌表征速率,可以对骨料进行批量化建模;本发明得到的骨料三维空间模型与现实骨料形貌基本一致,精确度高。[0107]为了进一步说明本发明的有益效果,本实施例中对大理石骨料进行实验,所有本发明方法得到如图3所示的大理石骨料的三维轮廓视图,将三维轮廓视图组装得到如图4所示的正交图像。如图5所示将使用本发明方法得到的三维空间模型和现实骨料形貌进行对比,图5中的图5(a)为现实骨料形貌,图5(b)为使用本发明方法得到的三维空间模型,从图5可以看出本发明得到的骨料三维空间模型与现实骨料形貌基本一致,精确度高。[0108]术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。本领域内的技术人员应明白,本技术的实施例可提供为方法、系统、或计算机程序产品。因此,本技术可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本技术可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、cd-rom、光学存储器等)上实施的计算机程序产品的形式。[0109]本技术是参照根据本技术实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。[0110]这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。[0111]这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。[0112]显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。









图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!




免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

相关内容 查看全部