测量装置的制造及其应用技术1.本发明属于信号处理技术领域,具体涉及一种基于多路径匹配追踪算法改进的高频超声去噪方法及系统。背景技术:2.目前,针对信号的去噪已经有较为成熟的去噪技术,但缺乏针对高频超声信号的专门处理技术。高频超声信号和一般信号有很大的区别,一方面高频超声信号属于脉冲信号,能量比较集中,对处理技术的时间分辨率要求较高;另一方面高频超声信号由于频率极高,因此对采样频率的要求也极高,导致高频超声信号维度较大,因此对处理技术的计算效率要求较高。3.高频超声在样品内部传播时,遇到不同界面会发生反射现象,产生不同的反射信号(回波),利用这一特性,可以通过高频超声扫描样品,从而对样品内部的微缺陷进行检测。由于不同材质的声阻抗不同,超声在传播过程中会发生反射、折射、衍射等现象,反射信号的强度在材料非连续处会发生变化,所以通过对回波信号进行分析,可以实现缺陷的有效诊断。但在实际检测过程中,高频超声检测对象较微小,反射回波信号较微弱,超声检测回波信号包含着与缺陷位置、尺寸以及特征相关的信息,由于高频超声检测受材料晶粒噪声以及检测系统噪声的影响,缺陷的反射回波被掩盖在噪声中,从而极大地限制了高频超声检测地检测精度和准确性。技术实现要素:4.本发明实施例提供一种基于多路径匹配追踪算法改进的高频超声去噪方法及系统,用于解决现有技术中高频超声检测微小缺陷信号低信噪比、低检测精度问题。5.本发明实施例提供一种基于多路径匹配追踪算法改进的高频超声去噪方法,该方法包括:6.s1:获取待测样品的高频超声检测信号;7.s2:根据所述高频超声检测信号构建离散过完备字典,并对所述离散过完备字典进行训练;8.s3:利用训练好的字典,通过多路径匹配追踪算法重构所述高频超声检测信号并得到全局最优原子;9.s4:对所述全局最优原子进行插值,构建连续原子库;10.s5:在所述连续原子库中根据全局最优原子的参数,重构高频超声检测信号,完成信号去噪。11.优选地,所述步骤s1中获取待测样品的高频超声检测信号的方法为:12.将待测样品完全浸没在去离子水中,使用高频超声探头扫描待测样品,保存扫描过程中获取的高频超声检测信号;所述高频超声探头的焦平面设置在待测样品的底面。13.优选地,所述步骤s2中根据所述高频超声检测信号构建离散过完备字典的方法为:14.根据所述高频超声检测信号选择迭代参数,构建离散过完备字典。15.优选地,所述迭代参数包括字典矩阵d∈rm×n,系数矩阵α∈rk×m,索引集ωm,残差em。16.优选地,所述步骤s3中利用训练好的字典,通过多路径匹配追踪算法重构所述高频超声检测信号并得到全局最优原子具体包括以下步骤:17.s31:给定字典d、待处理信号y和稀疏度k,初始化稀疏系数α0=0,残差r0=y,重构原子集ω0=φ,索引集ω0=φ;18.s32:对于第t次迭代,计算残差rt-1和字典矩阵d中的所有原子做内积,找出内积最大的g个对应的原子以及对应的索引,且根据每次迭代只保留n条路径,根据最优原子与残差的内积设置阈值,将入选原子与信号的内积小于阈值的剔除;19.s33:更新索引集ωt和对应的重构原子集ωt:20.ωt=[ωt-1,λt],[0021]s34:采用最小二乘法计算信号y相对应重构原子集ωt的稀疏系数αt;[0022]s35:判断是否达到迭代终止条件,若达到迭代终止条件,则迭代终止并利用所述索引集ωt还原稀疏系数α;若未达到迭代终止条件,则令t=t+1,直至迭代结束;[0023]s36:在所有路径中选择残差最小的进行输出,得到全局最优原子。[0024]优选地,所述步骤s4中对所述全局最优原子进行插值,构建连续原子库具体包括以下步骤:[0025]在所述全局最优原子频率附近利用极坐标插值,构建连续原子库,具体表示如下:[0026]起点原子初始原子d(fb)=d(fn),终点原子),终点原子[0027]d(fa)=c(fn)+rcos(θ)u(fn)-rsin(θ)v(fn)[0028]d(fb)=c(fn)+rcos(θ)u(fn)[0029]d(fc)=c(fn)+rcos(θ)u(fn)+rsin(θ)v(fn)[0030]其中,f表示频率,d(fn)表示从离散字典中选择的全局最优原子,c(fn)表示所述d(fa),d(fb),d(fc)构成连续原子库的圆心,u(fn)表示由圆心指向初始原子d(fb)的单位向量,v(fn)表示在圆弧平面上垂直于u(fn)的单位向量,r表示圆的半径,θ表示起点原子和初始原子之间的夹角。[0031]优选地,所述步骤s5中在所述连续原子库中根据全局最优原子的参数,重构高频超声检测信号,完成信号去噪,具体包括以下步骤:[0032]s51:根据所述原子库,则任意一个原子表示为:[0033][0034]其中,δ表示构建连续原子库的大小,即在范围为δ的区域内构建原子库;[0035]s52:将原子幅值考虑在内,则任意一个原子表示为:[0036][0037]其中,a表示原子幅值;[0038]s53:扩大选择区域:[0039]令αi=a,[0040]αi≥0[0041]βi2+γi2≤αi2ri2[0042]αiricos(θ)≤βi≤αir[0043]s54:通过求解任务获得最后信号y:[0044][0045]s55:通过调整最后信号y的参数,得到最终重构的信号可以表示为:[0046][0047][0048]本发明实施例提供一种基于多路径匹配追踪算法改进的高频超声去噪系统,该系统包括:[0049]采集模块,用于获取待测样品的高频超声检测信号;[0050]构建字典模块,用于根据所述高频超声检测信号构建离散过完备字典,并对所述离散过完备字典进行训练;[0051]稀疏重构模块,用于通过多路径匹配追踪算法重构所述高频超声检测信号并选取全局最优原子;[0052]插值模块,用于对所述全局最优原子进行插值,构建连续原子库;[0053]重构模块,用于在所述连续原子库中根据全局最优原子的参数,重构高频超声检测信号,完成信号去噪。[0054]所述系统用以实现上述所述的一种基于多路径匹配追踪算法改进的高频超声去噪方法。[0055]本发明实施例提供一种网络设备,该设备包括处理器、存储器和总线系统,所述处理器和存储器通过该总线系统相连,所述存储器用于存储指令,所述处理器用于执行存储器存储的指令,以实现上述所述的一种基于多路径匹配追踪算法改进的高频超声去噪方法。[0056]本发明实施例提供一种计算机存储介质,所述计算机存储介质存储有计算机软件产品,所述计算机软件产品包括的若干指令,用以使得一台计算机设备执行上述所述的一种基于多路径匹配追踪算法改进的高频超声去噪方法。[0057]与现有技术相比,本发明具有如下的有益效果:[0058]本发明实施例提供一种基于多路径匹配追踪算法改进的高频超声去噪方法及系统。本发明通过构建离散过完备字典,使用多路径匹配追踪算法提高了信号重构精度;通过多条路径选择全局最优路径,利用多路径匹配追踪算法挑选的全局最优原子,通过剪枝操作和阈值选择减少了路径选择,降低了计算量;然后在全局最优原子频率附近利用极坐标插值,构建连续原子库,通过调整全局最优原子的参数,消除信号与离散字典之间的误差。本发明提高了高频超声信号的信噪比,更有效的观察到微小缺陷的反射回波信号,从而提高高频超声检测微缺陷的准确性和可靠性。附图说明[0059]为了更清楚地说明本发明实施案例或现有技术中的技术方案,下边将对实施例中所需要使用的附图做简单介绍,通过参考附图会更清楚的理解本发明的特征和优点,附图是示意性的而不应该理解为对本发明进行任何限制,对于本域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。其中:[0060]图1是根据本发明实施例的一种基于多路径匹配追踪算法改进的高频超声去噪方法的流程图;[0061]图2是本发明实施例中原始高频超声检测信号的波形图;[0062]图3是本发明实施例中原始高频超声检测信号经去噪处理后的波形图;[0063]图4是根据本发明实施例的一种基于多路径匹配追踪算法改进的高频超声去噪系统的示意图;[0064]图5是根据本发明实施例的一种网络设备的示意图。具体实施方式[0065]为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。[0066]实施例一[0067]本发明实施例提供一种基于多路径匹配追踪算法改进的高频超声去噪方法,如图1所示,本实施例的方法包括:[0068]s101:获取待测样品的高频超声检测信号;[0069]s102:根据所述高频超声检测信号构建离散过完备字典,并对所述离散过完备字典进行训练;[0070]s103:利用训练好的字典,通过多路径匹配追踪算法重构所述高频超声检测信号并得到全局最优原子;[0071]s104:对所述全局最优原子进行插值,构建连续原子库;[0072]s105:在所述连续原子库中根据全局最优原子的参数,重构高频超声检测信号,完成信号去噪。[0073]本发明实施例提供一种基于多路径匹配追踪算法改进的高频超声去噪方法,本发明通过构建离散过完备字典,使用多路径匹配追踪算法提高了信号重构精度;通过多条路径选择全局最优路径,利用多路径匹配追踪算法挑选的全局最优原子,通过剪枝操作和阈值选择减少了路径选择,降低了计算量;然后在全局最优原子频率附近利用极坐标插值,构建连续原子库,通过调整全局最优原子的参数,消除信号与离散字典之间的误差。发明提高了高频超声信号的信噪比,更有效的观察到微小缺陷的反射回波信号,从而提高高频超声检测微缺陷的准确性和可靠性。[0074]进一步地,在步骤s101中对获取待测样品的高频超声检测信号的方法为:[0075]配置高纯度的去离子水作为耦合介质,将待测样品完全浸没在去离子水中,使用高频超声探头扫描待测样品,保存扫描过程中获取的高频超声回波时域信号;所述高频超声探头的焦平面设置在待测样品的底面。[0076]进一步地,在步骤s102中根据所述高频超声检测信号构建离散过完备字典的方法为:[0077]根据所述高频超声回波时域信号选择迭代参数,使用gabor原子,构建离散过完备字典。[0078]所述迭代参数包括字典矩阵d∈rm×n,系数矩阵α∈rk×m,索引集ωm,残差em。[0079]进一步地,在步骤s103中利用训练好的字典,通过加入剪枝操作和阈值选择的多路径匹配追踪算法重构所述高频超声检测信号并得到全局最优原子具体包括以下步骤:[0080]s31:给定字典d、待处理信号y和稀疏度k,初始化稀疏系数α0=0,残差r0=y,重构原子集ω0=φ,索引集ω0=φ;[0081]s32:对于第t次迭代,计算残差rt-1和字典矩阵d中的所有原子做内积,找出内积最大的g个对应的原子以及对应的索引,且根据每次迭代只保留n条路径,根据最优原子与残差的内积设置阈值,将入选原子与信号的内积小于阈值的剔除;[0082]s33:更新索引集ωt和对应的重构原子集ωt:[0083]ωt=[ωt-1,λt],[0084]s34:采用最小二乘法计算信号y相对应重构原子集ωt的稀疏系数αt;[0085]s35:判断是否达到迭代终止条件,若达到迭代终止条件,则迭代终止并利用所述索引集ωt还原稀疏系数α;若未达到迭代终止条件,则令t=t+1,直至迭代结束;[0086]s36:在所有路径中选择残差最小的进行输出,得到全局最优原子。[0087]进一步地,在步骤s104中对所述全局最优原子进行插值,构建连续原子库具体包括以下步骤:[0088]在所述全局最优原子频率附近利用极坐标插值,构建连续原子库,具体表示如下:[0089]起点原子初始原子d(fb)=d(fn),终点原子),终点原子[0090]d(fa)=c(fn)+rcos(θ)u(fn)-rsin(θ)v(fn)[0091]d(fb)=c(fn)+rcos(θ)u(fn)[0092]d(fc)=c(fn)+rcos(θ)u(fn)+rsin(θ)v(fn)[0093]其中,f表示频率,d(fn)表示从离散字典中选择的全局最优原子,c(fn)表示所述d(fa),d(fb),d(fc)构成连续原子库的圆心,u(fn)表示由圆心指向初始原子d(fb)的单位向量,v(fn)表示在圆弧平面上垂直于u(fn)的单位向量,r表示圆的半径,θ表示起点原子和初始原子之间的夹角。[0094]进一步地,在步骤s105中在所述连续原子库中根据全局最优原子的参数,重构高频超声检测信号,完成信号去噪具体包括以下步骤:[0095]s51:根据所述原子库,则任意一个原子表示为:[0096][0097]其中,δ表示构建连续原子库的大小,即在范围为δ的区域内构建原子库;[0098]s52:将原子幅值考虑在内,则任意一个原子表示为:[0099][0100]其中,a表示原子幅值;[0101]s53:扩大选择区域:[0102]令αi=a,[0103]αi≥0[0104]βi2+γi2≤αi2ri2[0105]αiricos(θ)≤βi≤αir[0106]s54:通过求解任务获得最后信号:[0107][0108]s55:通过调整最后信号y的参数,得到最终重构的信号可以表示为:[0109][0110][0111]在本技术的实际应用中,通过上述方法处理待测样品的高频超声检测信号后,相较于原始信号,重构得到的高频超声信号很好的消除了噪声的干扰,有效的提高了断面扫描下的微缺陷位置识别准确性和可靠性,并提高了信号的处理效率。申请人还通过以下实际实验证明了上述方法的可行性与准确性,具体的:[0112]该实验用于验证本发明对高频超声信号具有良好的去噪效果。本实验采用sam 300e超声扫描显微镜检测倒装芯片并提取回波信号,实验用芯片为美国practical component公司制作的面阵型芯片,型号是fa10-200×200,检测超声频率为110mhz,信号采样长度为550个采样点。所得到的高频超声检测信号如图2所示,在图2中可以清晰的看到,低幅值的回波信号被掩盖在噪声中,难以区分,容易造成微缺陷的漏检或错检。采用本技术提供的方法对该信号进行稀疏重构,去噪后的信号如图3所示,相较于图2,稀疏重构后的信号有效的去除了噪声的干扰,使信号的反射特征更加的明显。对高频超声信号进行稀疏重构能够有效的提高信号的信噪比,从而提高高频超声检测识别微缺陷的准确性以及可靠性。[0113]实施例二[0114]本发明实施例提供一种基于多路径匹配追踪算法改进的高频超声去噪系统,如图4所示,该系统包括:[0115]采集模块401,用于获取待测样品的高频超声检测信号;[0116]构建字典模块402,用于根据所述高频超声检测信号构建离散过完备字典,并对所述离散过完备字典进行训练;[0117]稀疏重构模块403,用于通过多路径匹配追踪算法重构所述高频超声检测信号并得到全局最优原子;[0118]插值模块404,用于对所述全局最优原子进行插值,构建连续原子库;[0119]重构模块405,用于在所述连续原子库中根据全局最优原子的参数,重构高频超声检测信号,完成信号去噪。[0120]所述系统,用以实现上述实施例一所述的一种基于多路径匹配追踪算法改进的高频超声去噪方法,为了避免冗余,在此不再赘述。[0121]实施例三[0122]本发明实施例提供一种网络设备,如图5所示,该设备包括处理器501、存储器502和总线系统503,所述处理器501和存储器502通过该总线系统503相连,所述存储器502用于存储指令,所述处理器501用于执行存储器502存储的指令。[0123]应理解,在本发明实施例中,该处理器501可以是中央处理单元(central processing unit,简称为“cpu”),该处理器501还可以是其他通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现成可编程门阵列(fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。[0124]该存储器502可以包括只读存储器和随机存取存储器,并向处理器501提供指令和数据。存储器502的一部分还可以包括非易失性随机存取存储器。例如,存储器502还可以存储设备类型的信息。[0125]该总线系统503除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统503。[0126]在实现过程中,上述的方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的各步骤。为避免重复,这里不再详细描述。[0127]实施例四[0128]本发明实施例提供一种计算机存储介质,所述计算机存储介质存储有计算机软件产品,所述计算机软件产品包括的若干指令,用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(rom,read-only memory)、随机存取存储器(ram,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。[0129]本领域内的技术人员应明白,本技术的实施例可提供为方法、系统、或计算机程序产品。因此,本技术可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。[0130]另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。[0131]本技术是参照根据本技术实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。[0132]可以理解的是,在本技术实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本技术实施例的范围。[0133]可以理解的是,在本发明的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本技术实施例的实施过程构成任何限定。[0134]最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
基于多路径匹配追踪算法改进的高频超声去噪方法及系统
作者:admin
2022-10-26 06:16:28
229
关键词:
测量装置的制造及其应用技术
专利技术