测量装置的制造及其应用技术1.本发明涉及雷达目标识别技术领域,具体涉及基于卷积神经网络融合特征的雷达目标识别方法及系统。背景技术:2.随着现代雷达技术的发展,现代雷达不仅能够进行目标检测和定位,而且具有对目标的属性或类型进行分类识别的能力。为了获得更多的目标信息,雷达目标识别技术成为现代雷达技术应用发展的重要技术之一。3.其中,低分辨雷达目标识别是雷达目标识别的一个重要研究方向,具有广泛的应用需求。由于低分辨雷达设备造价相对较低,为了控制成本,民用雷达一般采用低分辨体制,尤其是目前备受关注且具有广阔应用前景的“低慢小”目标探测雷达,为了及时地辨别威胁目标(例如无人机)从而实施有效的应对措施,民用雷达对目标识别功能具有较高要求。4.随着微动和微多普勒效应的概念引入雷达信号处理领域,微多普勒效应为雷达目标识别提供了新的技术手段。由于目标的微动调制,微多普勒特征蕴含了目标结构及其运动状态的信息,因此可以基于此特性展开低分辨雷达目标识别方法研究。近年来,深度学习技术蓬勃发展,该技术通过多层神经元结构的传递和非线性变换,能够对复杂的数据分布进行有效地表征。鉴于其对输入数据的信息具有强大的表征能力,深度学习在多个领域都有成功的应用。在目标识别方向,传统的雷达目标识别技术需要进行特征设计和特征提取操作,然后再将特征量输入分类器进行目标识别,其识别率相对较低且泛化性能不足;与传统机器学习方法相比,深度学习技术不用依赖手动设计特征以及繁琐的特征提取过程,通过搭建多层网络,自发地提取输入数据的信息并进行深层表征,能够大大提高目标识别准确度和泛化性能。5.卷积神经网络(cnn)是深度学习技术的重要模型,在分类任务中具有优越的性能。卷积神经网络通过卷积和池化处理提取具有旋转、平移不变性的深层局部特征,而且可通过采用局部连接、权值共享和池化处理方式减小网络模型的参数规模,降低网络参数学习难度。6.因此,目前亟需低分辨雷达目标识别方法,能够结合卷积神经网络模型和雷达目标微多普勒的特性,实现高性能的雷达目标识别。技术实现要素:7.有鉴于此,本发明提供了基于卷积神经网络融合特征的雷达目标识别方法及系统,采用神经网络同时提取多普勒谱分布和时频谱分布的微多普勒特征,并利用特征构造融合特征,实现高性能的雷达目标识别。8.为达成上述发明目的,本发明的技术方案为:9.一种基于卷积神经网络融合特征的雷达目标识别方法,具体步骤包括:10.步骤1、将待测的雷达回波信号进行变换,得到多普勒谱分布和时频谱分布。11.步骤2、对多普勒谱分布和时频谱分布分别进行预处理。12.步骤3、利用一维cnn模型对预处理后的多普勒谱分布提取特征,得到多普勒分布特征,利用二维cnn模型对预处理后的时频谱分布提取特征,得到时频谱分布特征,并将时频谱分布特征展开为一维向量;将展开后的时频谱分布特征与多普勒谱分布特征连接,得到融合特征矢量。13.步骤4、将融合特征矢量输入多层神经网络模型中,提取并输出特征;将特征输入softmax分类器模型进行目标识别,得到特征对应的目标识别类型。14.进一步的,对多普勒谱分布和时频谱分布分别进行预处理,具体方法为:对多普勒分布和时频谱分布分别进行最大值归一化处理。15.进一步的,步骤1的具体方法为:16.将待测的雷达回波信号进行傅里叶变换,得到多普勒谱分布。17.进一步的,步骤1的具体方法为:18.对雷达回波信号进行短时傅里叶变换,得到时频谱分布。19.进一步的,多层神经网络模型为全连接的多层神经网络模型。20.一种基于卷积神经网络融合特征的雷达目标识别系统,针对上述的方法,包括回波信号接收模块、特征提取网络模型和目标识别网络模型。21.回波信号接收模块,用于接收测的雷达回波信号并进行变换,得到多普勒谱分布和时频谱分布送入特征提取网络模型中。22.特征提取网络模型由一维cnn模型、二维cnn模型和特征量连接层组成。23.一维cnn模型由多层卷积层和池化层交替串联组成,用于对多普勒谱分布提取特征,得到多普勒谱分布特征。24.二维cnn模型由多层卷积层和池化层交替串联组成,用于对时频谱分布提取特征,得到时频谱分布特征,并将时频谱分布特征展开为一维向量。25.特征量连接层用于将展开后的时频谱分布特征与多普勒分布特征连接,得到融合特征矢量并送入目标识别网络模型中。26.目标识别网络模型由多层神经网络以及softmax层组成。27.多层神经网络具有一个隐藏层和输出层,激活函数为sigmoid;输出层的神经元个数与待识别的目标类别数相同;输出层输出包含输入数据类别信息的抽象表征。28.softmax层用于对抽象特征进行识别,并输出识别结果。29.进一步的,对多普勒谱分布和时频谱分布分别进行预处理,具体方法为:对多普勒分布和时频谱分布分别进行最大值归一化处理。30.进一步的,利用数据集对特征提取网络模型和目标识别网络模型分别进行参数学习和验证。31.有益效果:32.1、本发明方法利用一维cnn模型和二维cnn模型分别提取多普勒谱空间的分布特征和时频谱空间的分布特征,同时利用不同空间上的深层抽象特征构成融合特征;融合特征矢量输入多层全连接神经网络模型中,提取并输出深度网络得到包含输入数据类别信息的抽象表征;将抽象表征输入softmax分类器模型进行目标识别,得到特征对应的目标类别。本发明方法利用融合特征实现两类特征的信息互补,以增强雷达目标的识别性能,提高识别准确率。33.2、本发明系统包括回波信号接收模块、特征提取网络模型和目标识别网络模型,采用特征提取网络模型(深度卷积神经网络模型)提取多普勒谱空间的分布特征和时频谱空间的分布特征,同时利用不同空间上的深层抽象特征构成融合特征,利用融合特征实现两类特征的信息互补,以增强雷达目标的识别性能,提高识别准确率。特征提取网络模型由多层卷积层和池化层交替串联组成,提高识别精度。附图说明34.图1为本发明方法的流程示意图。35.图2为本发明方法的特征提取与目标识别网络结构示意图。具体实施方式36.下面结合附图并举实施例,对本发明进行详细描述。37.如图1所示,本发明提供了一种基于卷积神经网络融合特征的雷达目标识别方法,具体包括如下步骤:38.步骤1、将待测的雷达回波信号进行变换,得到多普勒谱分布和时频谱分布,具体方法为:将待测的雷达回波信号进行傅里叶变换(fft),得到多普勒谱分布;对雷达回波信号进行短时傅里叶变换(stft),得到时频谱分布。39.步骤2、对多普勒谱分布和时频谱分布分别进行预处理。40.步骤3、利用一维cnn模型对预处理后的多普勒谱分布提取特征,得到多普勒谱分布特征,利用二维cnn模型对预处理后的时频谱分布提取特征,得到时频谱分布特征,并将时频谱分布特征展开为一维向量;将展开后的时频谱分布特征与多普勒谱分布特征连接,得到融合特征矢量。41.步骤4、将融合特征矢量输入多层神经网络模型中,提取并输出特征;将特征输入softmax分类器模型进行目标识别,得到特征对应的目标识别类型。42.下面结合具体实施例,对本发明做进一步阐述。43.本实施例使用的微多普勒回波信号数据集为一低分辨两坐标地面监视雷达采集的外场实测数据,包括人员目标、轮式车辆目标、直升机目标和无人机目标共四类目标。其中,人员目标共700帧信号、车辆目标共648帧信号、直升机共290帧信号、无人机目标共590帧信号。44.本发明针对上述数据集进行雷达目标识别,具体处理过程如下:45.步骤1、分别对雷达回波信号进行fft和stft处理,得到多普勒谱分布和时频谱分布。一帧有效雷达回波信号的离散表示为z={z[0],z[1],...,z[n]...,z[n-1]}∈cn。其中,z[n]为雷达回波信号的第n采样点,n为总点数,n∈[0,n-1]。[0046]步骤1.1、对雷达回波信号进行fft变换并取模值,得到多普勒谱分布:[0047][0048]式中,w[n]为窗函数,|·|表示取模操作,n为离散时间,k为离散频率,j为虚数。[0049]步骤1.2,对雷达回波信号进行stft变换并取模值,得到时频谱分布:[0050][0051]式中,s(m,n)表示stft时频谱分布,m为时间维,n为频率维,w(kt-mt)为滑动窗函数,t为时间采样间隔,f为频率采样间隔。[0052]步骤2、分别对多普勒谱分布和时频谱分布进行预处理。[0053]步骤2.1、对多普勒谱分布进行最大值归一化处理,处理后的多普勒谱分布为[0054]步骤2.2、对时频谱分布的每个采样时刻的谱数据做最大值归一化处理。处理后的时频谱分布为:[0055]步骤3、利用cnn模型分别提取多普勒谱分布特征和时频谱分布特征,并将两类特征进行融合。[0056]步骤3.1、利用一维cnn模型提取多普勒谱x′[k]的分布特征f1。[0057]步骤2.1所得多普谱数据通过一维cnn模型提取特征。对如图2所示,一维cnn模型的基本网络结构由多层卷积层和池化层交替串联组成,具体选用的网络结构共4层,其组成按照串联顺序具体如下:第1卷积层1d-cov1具有64个卷积核,卷积核大小为1×3,卷积步长为2,激活函数为relu函数;第1池化层1d-pool1采用最大池化,窗口大小为1×2,步步长为2;第2卷积层1d-cov2具有64个卷积核,卷积核大小为1×3,卷积步长为2,激活函数为relu函数;第2池化层1d-pool2采用最大池化,窗口大小为1×2,步步长为2。该网络输出一维特征向量。[0058]步骤3.2、利用二维cnn模型提取时频谱s′(m,n)的分布特征f2,并将其展开为一维向量f′2。[0059]对步骤2.2所得多普勒谱数据通过二维cnn模型提取特征。对如图2所示,二维cnn模型的基本网络结构由多层卷积层和池化层交替串联组成,具体选用的网络结构共4层,其组成按照串联顺序具体如下:第1卷积层2d-cov1具有6个卷积核,卷积核大小为5×5,卷积步长为2,激活函数为relu函数;第1池化层2d-pool1采用平均池化,窗口大小为2×2,步步长为2;第2卷积层2d-cov2具有16个卷积核,卷积核大小为5×5,卷积步长为2,激活函数为relu函数;第2池化层2d-pool2采用最大池化,窗口大小为2×2,步步长为2。该网络输出二维特征向量。[0060]步骤3.3、将二维卷积神经网络提取的时频谱分布特征展开为一维向量f′2并与将一维卷积神经网络提取的多普勒谱分布特征f1连接,得到融合特征矢量f=(f1;f′2)。[0061]步骤4、将融合特征矢量f进一步输入全连接的多层神经网络提取特征并使用softmax分类器模型进行目标识别。[0062]多层神经网络具有一个隐藏层和输出层,隐藏层含有32个神经元,激活函数为sigmoid;输出层的神经元个数与待识别的目标类别数相同,其中本发明实施例中,数据集包含四类目标,则本发明实施例构建的输出层具有4个神经元。具体可表示为:多层神经网络的输出y={y1,y2,...,yc,...,yc},c为目标类别数,这里共四类目标c=4。[0063]softmax函数的表达式为[0064][0065]目标识别类型为[0066][0067]其中,pc为softmax函数的输出值,yc'为多层神经网络的输出,yc'∈{y1,y2,...,yc,...,yc}。[0068]利用数据集对本发明的特征提取和识别网络进行参数学习和验证。首先将数据集拆分为训练集和测试集,对每类目标,随机取百分之七十的样本作为训练数据集,剩余百分之三十的样本作为测试集。[0069]如图2所示,基于上述方法,本发明还提出一种基于卷积神经网络融合特征的雷达目标识别系统,包括回波信号接收模块、特征提取网络模型和目标识别网络模型。[0070]回波信号接收模块,用于接收测的雷达回波信号并进行变换,得到多普勒谱分布和时频谱分布送入特征提取网络模型中。送入前,多普勒谱分布和时频谱分布分别进行最大值归一化处理(作为预处理手段)。[0071]特征提取网络模型由一维cnn模型、二维cnn模型和特征量连接层组成。[0072]一维cnn模型由多层卷积层和池化层交替串联组成,用于对多普勒谱分布提取特征,得到多普勒谱分布特征;二维cnn模型由多层卷积层和池化层交替串联组成,用于对时频谱分布提取特征,得到时频谱分布特征,并将时频谱分布特征展开为一维向量。[0073]特征量连接层用于将展开后的时频谱分布特征与多普勒分布特征连接,得到融合特征矢量并送入目标识别网络模型中。[0074]目标识别网络模型由多层神经网络以及softmax层组成。[0075]多层神经网络具有一个隐藏层和输出层,激活函数为sigmoid;输出层的神经元个数与待识别的目标类别数相同;输出层输出包含输入数据类别信息的抽象表征;隐藏层含有32个神经元。[0076]softmax层用于对抽象特征进行识别,并输出识别结果。本发明实施例中,利用数据集对特征提取网络模型和目标识别网络模型分别进行参数学习和验证。[0077]训练集用于对网络参数的训练学习。网络参数训练学习时,采用one-hot编码形式表示目标的类别编号。[0078]损失函数使用交叉熵函数其中,yi为样本对应目标one-hot编码,网络softmax分类器输出的预测值,为one-hot编码的第j位数值。网络参数的训练学习采用基于小批量随机梯度下降法的adam优化方法。经过训练学习得到网络参数后,对测试集的样本进行目标识别。[0079]基于数据集进行五次识别处理实验,识别结果如表1所示,平均识别率为96.08%。[0080]表1识别结果表[0081][0082]表2为实验2的个体识别率。实测数据的实验证明,本发明方法采用相对简单的深度神经网络结构,通过同时利用全局的多普勒谱和时频谱的分布特征,实现了准确的雷达目标识别。[0083]表2个体识别率表[0084][0085][0086]综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
基于卷积神经网络融合特征的雷达目标识别方法及系统
作者:admin
2022-08-31 10:43:50
202
关键词:
测量装置的制造及其应用技术
专利技术