无机化学及其化合物制造及其合成,应用技术1.本发明涉及包覆状态检测方法、包覆状态检测装置及光纤制造方法。2.本技术基于2020年1月30日申请的日本专利申请第2020-3.013921号而要求优先权,依照其内容,并且参照其整体而引入本说明书。背景技术:4.作为在母材拉丝时通过在玻璃纤维(裸纤:bared fiber)的表面包覆树脂而得到的包覆光纤(coated fiber)的偏心测定方法,在专利文献1至专利文献4公开了将来自激光光源的激光束照射至包覆光纤的侧面,对通过其前方散射光(透过光)而形成的浓淡图像进行检测,根据树脂层的厚度偏差状态对包覆光纤内的玻璃纤维的偏心进行测定的光纤的偏心测定装置及测定方法。5.专利文献1:日本专利平4-315939号公报6.专利文献2:日本特开平4-319642号公报7.专利文献3:日本特开平5-107046号公报8.专利文献4:日本特开平5-087681号公报技术实现要素:9.本发明的实施方式所涉及的包覆状态检测方法利用来自包覆有树脂的光纤(包覆光纤)的放射光,用于对沿以光纤轴为中心的圆周方向的该树脂的包覆状态进行检测,作为其一个方式,准备成像光学系统,与物体面上的位置信息相对应地检测由该成像光学系统成像的像面(受光面)上的各部的光强度。具体地说,准备的成像光学系统包含有在像面和相对于该像面处于共轭关系的物体面之间的光路上配置的反射镜。该反射镜具有供包覆光纤经过的引导孔。另外,在像面侧,通过成像光学系统使来自经过了反射镜的引导孔的包覆光纤中的与物体面交叉的部位的放射光在像面上成像,由此与物体面上的位置信息相对应地检测该像面上的各部的光强度。附图说明10.图1是能够应用于本发明的实施方式所涉及的包覆状态检测装置的成像光学系统,是表示包含具有平坦面的反射镜的成像光学系统的各种例子的图。11.图2是能够应用于本发明的实施方式所涉及的包覆状态检测装置的成像光学系统,是表示包含具有曲面的反射镜的成像光学系统的各种例子的图。12.图3是表示用于实施本发明的实施方式所涉及的光纤制造方法的光纤制造装置(拉丝装置)的一个例子的图。13.图4是表示应用于树脂包覆装置的例子的图,该树脂包覆装置将树脂进一步包覆于在母材拉丝后得到的包覆光纤的外周面上。14.图5是用于对从拉丝出的光纤放射出光的机理进行说明的图。15.图6是表示将应用了图2的成像光学系统2b的包覆状态检测器应用于图3的光纤制造装置的例子的图。16.图7是用于对本发明的实施方式所涉及的包覆检测装置的控制部(数据加工部)的控制动作的例子进行说明的图。具体实施方式17.[本发明所要解决的课题][0018]发明人关于上述的现有技术进行了研究,其结果发现了如下的课题。即,在包覆外径(包覆光纤的外径)和玻璃直径(裸纤的外径)之比小的情况下(例如为1.7以下),由用于对包覆的树脂层的厚度偏差状态进行检测的监视光形成的浓淡图像无法视觉识别,或者难以视觉识别。另外,在从包覆光纤的侧面对沿以光纤轴为中心的圆周方向的树脂层的厚度偏差状态进行检测的情况下,存在下述课题,即,需要准备多个检测光学系统(激光光源及受光装置),不仅导致装置制造的高成本化,还导致这些检测光学系统的对准作业的复杂化、装置的大型化、进而装置构造的复杂化。[0019]本发明就是为了解决上述这样的课题而提出的,其目的在于,提供一种包覆状态检测方法、包覆状态检测装置及光纤制造方法,其与现有技术相比较能够以更简单的装置结构,即使在包覆外径和玻璃直径之比小的情况下,也能对包覆光纤的树脂层的包覆状态进行检测。[0020][本发明的效果][0021]根据本发明的包覆状态检测方法等,与现有技术相比较能够以更简单的装置结构,即使在包覆外径和玻璃直径之比小的情况下,也能进行包覆光纤的树脂层的包覆状态的检测。[0022][本发明的实施方式的说明][0023]首先,分别单独地列举本发明的实施方式的内容而进行说明。[0024](1)本发明的实施方式所涉及的包覆状态检测方法利用来自包覆有树脂的光纤(在裸纤的表面包覆有树脂的包覆光纤)的放射光,用于对沿以光纤轴为中心的圆周方向的该树脂的包覆状态进行检测,作为其一个方式,准备成像光学系统,与物体面上的位置信息相对应地检测由该成像光学系统成像的像面(受光面)上的各部的光强度。具体地说,准备的成像光学系统包含有在像面和相对于该像面处于共轭关系的物体面之间的光路上配置的反射镜。该反射镜具有供包覆光纤经过的引导孔。另外,在像面侧,通过成像光学系统使来自经过了反射镜的引导孔的包覆光纤中的与物体面交叉的部位的放射光在像面上成像,由此与物体面上的位置信息相对应地检测该像面上的各部的光强度。[0025]此外,“来自包覆光纤的放射光”是照射至制造中的光纤的光成分中的在光纤内传递之后向光纤外放射的光成分,作为一个例子而可举出使光纤的包覆层固化的uv光。[0026]此外,成像光学系统可以构成为在物体面和像面之间的光路上形成中间成像面。在该情况下,通过在中间成像面上配置光圈,从而能够使在像面上形成的浓淡图像的对比度提高。[0027]根据上述的结构,能够通过更简单的装置结构进行以光纤轴为中心的树脂层的包覆状态的高效的检测。换言之,根据上述的结构,不依赖于包覆外径(包覆光纤的外径)和玻璃直径(裸纤的外径)之比,能够进行沿以光纤轴为中心的圆周方向的包覆状态的检测。此外,在本说明书中“树脂的包覆状态”是指在裸纤的外周设置的树脂层的沿圆周方向的厚度变动(树脂层的厚度偏差状态,或者包覆光纤内的裸纤的偏心状态)、树脂内的气泡混入状态、树脂层相对于裸纤的界面剥离状态等。另外,成为检测对象的包覆光纤是在玻璃纤维(裸纤)的表面包覆有树脂层的包覆光纤,树脂层由在母材拉丝出的裸纤的表面设置的单层(一次包覆)或者多层(连续地设置的一次包覆、二次包覆等)构成。另外,在树脂层还包含着色树脂,一边将在母材拉丝时卷绕于鼓轮的包覆光纤向其他鼓轮重新卷绕,一边将该着色树脂包覆于该包覆光纤的表面。[0028](2)作为本发明的一个方式,可以基于检测出的光强度及对应的位置信息,使将树脂的包覆状态视觉性地表现的二维图像在监视器上进行显示。在该情况下,能够对检测对象即包覆光纤的剖面的状态视觉性地进行确认。[0029](3)作为本发明的一个方式,优选二维图像包含表示检测对象即包覆光纤的剖面的浓淡图像、分别沿在相当于光纤轴的像面上的轴和该像面的交点处彼此正交的该像面上的2根正交轴显示的光强度分布以及沿以相当于光纤轴的像面上的轴为中心的圆周方向的光强度分布之中的至少任一个。特别地,通过对暂时导入至照相机等图像获取装置的图像进行数值解析,从而能够定量地或者动态地对包覆状态(沿树脂层的圆周方向的厚度变动、树脂层内的气泡混入状态、裸纤和树脂层的界面处的剥离状态)进行确定。另外,通过将检测数据导入至测量仪器,从而能够进行过程控制(基于导入的检测数据,能够生成用于对制造装置等的各部的动作进行调整的控制信息)。[0030](4)作为本发明的一个方式,上述反射镜可以包含离轴抛物面镜,在该情况下,该离轴抛物面镜具有作为引导孔的孔。在作为反射镜而应用离轴抛物面镜的情况下,该成像光学系统配置为,包覆光纤在经过离轴抛物面镜的孔之后经过该离轴抛物面镜的焦点。离轴抛物面镜将来自焦点的光作为准直光进行反射。因此,通过作为反射镜而应用离轴抛物面镜,从而能够削减构成成像光学系统的透镜要素的数量(成像光学系统的构造简单化)。[0031](5)作为本发明的一个方式,上述反射镜可以包含椭圆面镜,在该情况下,该椭圆面镜具有作为引导孔的孔。在作为反射镜而应用椭圆面镜的情况下,该成像光学系统配置为,包覆光纤在经过椭圆面镜的孔之后经过该椭圆面镜的一个焦点、且该椭圆面镜的另一个焦点位于像面上或者该椭圆面镜和像面之间的光路上。椭圆面镜将来自一个焦点的光在另一个焦点聚光(2个焦点满足共轭关系)。因此,作为反射镜而应用椭圆面镜,由此能够仅通过该椭圆面镜而构成成像光学系统。另外,在将该椭圆面镜和透镜组合的情况下,也能够实现简单构造的成像光学系统(成像光学系统的构造简单化)。[0032](6)作为本发明的一个方式,从包覆光纤放射的放射光可以包含相对于反射镜在物体面的相反侧空间对树脂进行照射的树脂固化用的光。即,在对包覆光纤制造装置(拉丝装置)应用该包覆状态检测方法的情况下,通过将上述的成像光学系统配置于树脂包覆装置的下游侧,从而能够将树脂固化用的光源沿用为包覆状态检测用的光源。[0033](7)作为本发明的一个方式,从光纤放射的放射光可以包含相对于反射镜在物体面的相反侧空间对该光纤进行照射的树脂固化用的光以外的来自外部光源的光。如上所述,通过独立于上述的树脂包覆装置的紫外线光源而准备外部光源,从而成像光学系统的配置自由度提高。另外,通过配置外部光源,从而能够实现由来自包覆光纤的包覆表面的放射光形成的浓淡图像的清晰化(在像面上形成的浓淡图像的s/n比的改善)。[0034](8)本发明的实施方式所涉及的包覆状态检测装置是实现上述的包覆状态检测方法的装置,具有利用来自包覆有树脂的光纤(包覆光纤)的放射光,用于对沿以光纤轴为中心的圆周方向的所述树脂的包覆状态进行检测的构造。具体地说,该包覆状态检测装置作为其一个方式而具有受光装置和成像光学系统。成像光学系统包含有在应该对受光装置的受光面进行投影的像面和相对于该像面处于共轭关系的物体面之间的光路上配置的反射镜。该反射镜具有供包覆光纤经过的引导孔。另外,受光装置与物体面上的位置信息相对应地对来自经过了反射镜的引导孔的包覆光纤中的与物体面交叉的部位的放射光由成像光学系统成像后的像面上的各部的光强度进行检测。通过该结构,能够实现上述的包覆状态检测方法。[0035](9)作为本发明的一个方式,该包覆状态检测装置可以还具有该控制部基于由受光装置检测出的光强度及对应的位置信息,使将树脂的包覆状态视觉性地表现的二维图像在监视器上进行显示。在该情况下,能够视觉性地对检测对象即包覆光纤的剖面的状态进行确认。另外,二维图像优选包含相当于检测对象即包覆光纤的剖面的浓淡图像、分别沿在光纤轴和像面的交点处彼此正交的该像面上的2根正交轴显示的光强度分布、以及沿以光纤轴为中心的圆周方向的光强度分布之中的至少任一者。例如,通过对暂时导入至照相机等图像获取装置的图像进行数值解析,从而能够定量地或者动态地对包覆状态(树脂层的沿圆周方向的厚度变动、树脂层内的气泡混入状态、裸纤和树脂层的界面处的剥离状态)进行确定。另外,通过将检测数据导入至测量仪器,从而能够进行过程控制(基于导入的检测数据,能够生成用于对制造装置等的各部的动作进行调整的控制信息)。[0036](10)作为本发明的一个方式,上述反射镜可以包含离轴抛物面镜,在该情况下,离轴抛物面镜具有作为引导孔的孔。在作为反射镜而应用离轴抛物面镜的情况下,该成像光学系统配置,包覆光纤经过离轴抛物面镜的孔之后经过该离轴抛物面镜的焦点行。在该情况下,如上所述地能够将成像光学系统的构造简单化。[0037](11)作为本发明的一个方式,上述反射镜可以包含椭圆面镜,在该情况下,椭圆面镜具有作为引导孔的孔。在作为反射镜而应用椭圆面镜的情况下,该成像光学系统配置为,包覆光纤将椭圆面镜的孔贯通之后经过该椭圆面镜的一个焦点、且该椭圆面镜的另一个焦点位于像面上或者该椭圆面镜和像面之间的光路上。在该情况下,如上所述地也能够将成像光学系统的构造简单化。[0038](12)作为本发明的一个方式,该包覆状态检测装置可以包含光源,该光源相对于反射镜在物体面的相反侧空间,使能够在包含树脂的光纤内传输的光对该光纤进行照射。在对光纤制造装置应用该包覆状态检测装置的情况下,配置于树脂包覆装置的下游,由此例如能够将来自该树脂包覆装置的紫外线光源的光作为检测光(放射光)进行利用。另外,除了树脂包覆装置的光源(树脂固化用的紫外线光源)以外,通过灵活使用另行设置的外部光源,从而能够有效地改善在像面上形成的浓淡图像的s/n比。[0039](13)本发明的实施方式所涉及的光纤制造方法将通过对光纤母材进行拉丝而得到的裸纤在对该裸纤的表面包覆有树脂的状态下进行卷绕。特别地,该光纤制造方法作为其一个方式,将具有如上述的构造的包覆状态检测装置(本发明的包覆状态检测装置)配置于具有用于在裸纤的表面包覆树脂的模具的树脂包覆装置的下游侧,基于从该包覆状态检测装置得到的检测结果对树脂包覆条件进行变更。此外,在树脂包覆条件除了模具的姿态的变更(消除包覆光纤的裸纤的偏心)以外,还可举出喷射气体流量的调整(co2调整)、抑制树脂层内的气泡(具体地说,在树脂包覆装置的上游侧配置的冷却装置的温度调整)等。[0040]以上,在该[本发明的实施方式的说明]的栏中列举的各方式能够相对于其余全部方式各自进行应用,或者能够相对于这些其余方式的全部组合进行应用。[0041][本发明的实施方式的详细内容][0042]以下,参照附图对本发明所涉及的光纤的包覆状态检测方法、光纤的包覆状态检测装置及光纤制造方法的具体例详细地进行说明。此外,本发明不受这些例示所限定,而是由权利要求书示出,意在包含与权利要求书等同的含义以及范围内的全部变更。另外,在附图的说明中对同一要素标注同一标号而省略重复说明。[0043]首先,使用图1及图2对用于实现本发明的实施方式所涉及的包覆状态检测方法及本发明的实施方式所涉及的包覆状态检测装置(用于实施本发明的实施方式所涉及的包覆状态检测方法的装置)的成像光学系统的代表性构造进行说明。此外,图1是表示能够应用于本发明的实施方式所涉及的包覆状态检测方法及包覆状态检测装置的、包含具有平坦面的反射镜的成像光学系统的各种例子的图。另外,图2是表示能够应用于本发明的实施方式所涉及的包覆状态检测方法及包覆状态检测装置的、包含具有曲面的反射镜的成像光学系统的各种例子的图。[0044]图1的成像光学系统1a是具有利用了平面反射镜的最简单的构造的成像光学系统,由成像透镜10和平面反射镜20构成。对来自包覆光纤的放射光的一部分进行受光的受光装置的受光面设置于像面ip,物体面op和像面ip经由成像透镜10而彼此处于共轭关系。即,该成像光学系统1a的光轴ax和物体面op的交点c1与光轴ax和像面ip的交点c2彼此成为共轭点。平面反射镜20配置于物体面op和成像透镜10之间的光路上,来自物体面op的放射光由该平面反射镜20反射而在像面ip上聚光。另外,平面反射镜20设置于引导部件30的一面。并且,在平面反射镜20和引导部件30设置有用于使包覆光纤经过的引导孔30a,该平面反射镜20具有引导孔30a的输出侧开口21。包覆光纤从引导孔30a的输入侧开口31朝向在平面反射镜20设置的输出侧开口21而经过。另外,引导部件30为了对包覆光纤和平面反射镜20的位置关系进行固定而保持于支撑部件32。[0045]例如,在以经过了将输入侧开口31和输出侧开口21连结的引导部件30的引导孔30a的包覆光纤在共轭点c1处与物体面op交叉的方式配置有该成像光学系统1a的情况下,像面ip形成于从包覆光纤分离规定距离的位置,来自位于共轭点c1的包覆光纤的部位的放射光在像面ip上的共轭点c2成像。由此,表示共轭点c1处的包覆光纤的剖面的二维的浓淡图像形成于像面ip上。[0046]图1的成像光学系统1b由2块准直透镜11、12和平面反射镜20构成。另外,该成像光学系统1b的光轴ax的长度(光路长度)能够通过对准直透镜11、12间的距离l进行变更而调节。物体面op的位置由准直透镜11的焦点的位置决定,像面ip的位置由准直透镜12的焦点的位置决定。物体面op和像面ip经由准直透镜11、12而彼此处于共轭关系。即,该成像光学系统1b的光轴ax和物体面op的交点c1与光轴ax和像面ip的交点c2彼此成为共轭点。平面反射镜20配置于物体面op和准直透镜11之间的光路上,来自物体面op的放射光由该平面反射镜反射而在像面ip上聚光。另外,平面反射镜20与成像光学系统1a同样地,设置于通过支撑部件32对相对于包覆光纤的相对位置进行了固定的引导部件30的一面。在引导部件30设置有将在平面反射镜20设置的输出侧开口21和输入侧开口31连结的引导孔30a。[0047]在该成像光学系统1b,在以经过了将输入侧开口31和输出侧开口21连结的引导部件30的引导孔30a的包覆光纤在共轭点c1处与物体面op交叉的方式配置有该成像光学系统1b的情况下,来自位于共轭点c1的包覆光纤的部位的放射光也在像面ip上的共轭点c2成像。由此,表示共轭点c1处的包覆光纤的剖面的二维的浓淡图像形成于像面ip上。[0048]图1的成像光学系统1c由2块成像透镜13、14、平面反射镜20、在2块成像透镜13、14之间配置的光圈15构成。在该成像光学系统1c,在形成于成像透镜13和成像透镜14之间的光路上的成像面上配置有光圈15,物体面op、配置有光圈15的面及像面ip彼此处于共轭关系。即,该成像光学系统1c的光轴ax和物体面op的交点c1、光轴ax和像面ip的交点c2及c2和光轴ax和配置有光圈15的成像面的交点c3分别成为彼此的共轭点。平面反射镜20配置于物体面op和成像透镜13之间的光路上,来自物体面op的放射光由该平面反射镜20反射而在像面ip上聚光。另外,平面反射镜20与成像光学系统1a同样地,设置于通过支撑部件32对相对于包覆光纤的相对位置进行了固定的引导部件30的一面。在引导部件30设置有将在平面反射镜20设置的输出侧开口21和输入侧开口31连结的引导孔30a。[0049]在该成像光学系统1c,在以经过了将输入侧开口31和输出侧开口21连结的引导部件30的引导孔30a的包覆光纤在共轭点c1处与物体面op交叉的方式配置有该成像光学系统1c的情况下,来自位于共轭点c1的包覆光纤的部位的放射光也在像面ip上的共轭点c2成像。由此,表示共轭点c1处的包覆光纤的剖面的二维的浓淡图像形成于像面ip上。此外,在经过了平面反射镜20的包覆光纤在从共轭点c1偏离的位置处与物体面op交叉的情况下,光圈15的成像面(与光轴ax正交的面)上的位置被调整。[0050]上述的成像光学系统1a至成像光学系统1c都是包含平面反射镜20的成像光学系统,但通过取代该平面反射镜20而应用特殊的曲面镜,从而能够使成像光学系统的构造更简单。例如,图2的成像光学系统2a通过在图1的成像光学系统1a或者图1的成像光学系统1c应用具有与旋转椭圆体的表面52的一部分一致的曲面的反射镜(以下记载为“椭圆面镜”)50而得到。另外,图2的成像光学系统2b通过在图1的成像光学系统1b应用具有与旋转抛物面62的一部分一致的曲面的离轴抛物面镜60而得到。[0051]具体地说,在取代图1的成像光学系统1a的平面反射镜20及成像透镜10而应用了椭圆面镜50的成像光学系统2a,通过椭圆面镜50的2个焦点(旋转椭圆体的2个焦点)之中的一个焦点的位置而决定物体面op的位置,通过另一个焦点的位置而决定像面ip的位置(椭圆面镜50的2个焦点为共轭点c1、c2)。在该情况下,成像光学系统2a在光轴ax上不包含透镜要素而能够与成像光学系统1a同等地起作用。[0052]另外,在取代图1的成像光学系统1c的平面反射镜20及成像透镜13而应用了椭圆面镜50的成像光学系统2a,通过椭圆面镜50的2个焦点之中的一个焦点位置而决定物体面op的位置,另一个焦点的位置与配置有光圈15的成像面的位置一致(椭圆面镜50的2个焦点为共轭点c1、c3)。在该情况下,成像光学系统2a在削减了配置于光轴ax上的透镜的块数的状态下能够与成像光学系统1c同等地起作用。[0053]在成像光学系统2a,来自物体面op的放射光由椭圆面镜50反射而在像面ip上聚光。另外,椭圆面镜50与成像光学系统1a及成像光学系统1c同样地,设置于通过支撑部件42对相对于包覆光纤的相对位置进行了固定的引导部件40的一面。在引导部件40设置有将在椭圆面镜50设置的输出侧开口51和输入侧开口41连结的引导孔40a。[0054]并且,在取代图1的成像光学系统1b的平面反射镜20及准直透镜11而应用了离轴抛物面镜60的成像光学系统2b,通过该离轴抛物面镜60的焦点的位置而决定物体面op的位置,通过准直透镜12的焦点的位置而决定像面ip的位置。在该情况下,离轴抛物面镜60的焦点相对于光轴ax和像面ip的交点c2而共轭(物体面op上的镜焦点成为像面ip上的交点c2的共轭点c1)。因此,根据该成像光学系统2b,来自离轴抛物面镜60的焦点的光通过该离轴抛物面镜60被准直化,通过准直透镜12而在像面ip上成像。[0055]在成像光学系统2b,来自物体面op的放射光由离轴抛物面镜60反射而在像面ip上聚光。另外,离轴抛物面镜60与成像光学系统1a等同样地,设置于通过支撑部件42对相对于包覆光纤的相对位置进行了固定的引导部件40的一面。在引导部件40设置有将在离轴抛物面镜60设置的输出侧开口61和输入侧开口41连结的引导孔40a。[0056]图3是表示用于实施本发明的实施方式所涉及的光纤制造方法的光纤制造装置(拉丝装置)的一个例子的图。具体地说,图3的光纤制造装置具有:加热器150,其用于对光纤母材100的一端进行加热;鼓轮200,其用于卷绕对通过将光纤母材100进行拉丝而得到的裸纤(玻璃纤维)110包覆树脂后的包覆光纤120;树脂包覆装置300;以及包覆状态检测装置500。光纤母材100具有纤芯部100a和包层部100b。此外,纤芯部100a是通过进行母材拉丝而得到的裸纤110的应成为纤芯110a的区域,包层部100b是将该纤芯部100a的外周包围的、裸纤110的应成为包层110b的区域。鼓轮200向箭头s1所示的方向旋转,由此包覆光纤120卷绕于鼓轮200。树脂包覆装置300是配置于光纤母材100和鼓轮200之间,在行进中的裸纤110的外周面上包覆树脂的装置。由树脂包覆装置300对裸纤110包覆树脂而得到包覆光纤120。树脂包覆装置300包含:模具310,其用于在裸纤110的外周面上包覆紫外线固化树脂;姿态控制装置320,其用于对模具310的姿态进行调节;以及紫外线照射装置330。包覆状态检测装置500利用来自位于上游的树脂包覆装置300的紫外线照射装置330的紫外线,对表示包覆光纤120的剖面的二维的浓淡图像进行检测。[0057]此外,虽然没有进行图示,但在光纤母材100和树脂包覆装置300之间配置用于将裸纤110强制性地冷却的冷却装置。另外,在图3的例子示出了1级树脂包覆装置300,但也可以沿卷绕于鼓轮的包覆光纤120的长度方向而配置多级树脂包覆装置。另外,树脂包覆装置300所使用的树脂可以不是紫外线固化树脂。[0058]图4是表示应用于在母材拉丝后得到的包覆光纤的外周面上进一步包覆树脂(例如,着色树脂)的树脂包覆装置的例子的图。图4的例子是将包覆光纤120从鼓轮(卷绕有由图3的光纤制造装置制造出的包覆光纤120的鼓轮)200一边着色一边重新卷绕于鼓轮210的装置。树脂包覆装置400在从沿箭头s2所示的方向旋转的鼓轮200向沿箭头s3所示的方向旋转的鼓轮210重新卷绕的包覆光纤120的外周面上包覆着色树脂。本发明的包覆状态检测装置配置于该树脂包覆装置400的下游侧。[0059]图4所示的树脂包覆装置400具有与图3的树脂包覆装置300相同的构造,由树脂包覆装置400对包覆光纤120包覆着色树脂,由此得到着色包覆光纤130。即,树脂包覆装置400包含:模具410,其用于在包覆光纤120的外周面上包覆紫外线固化树脂(着色树脂);姿态控制装置420,其用于对模具410的姿态进行调节;以及紫外线照射装置430。另外,图4所示的包覆状态检测装置500也利用来自位于上游的树脂包覆装置400的紫外线照射装置430的紫外线,对表示着色包覆光纤130的剖面的二维的浓淡图像进行检测。[0060]图5是用于说明如图3及图4所示本发明的包覆状态检测装置500能够在树脂包覆装置300的下游侧或者树脂包覆装置400的下游侧起作用的机理,即,从包覆光纤放射出光的机理的图。此外,在图5示出了图3的光纤制造装置的树脂包覆装置300的内部构造,但在图4所示的树脂包覆装置400也通过相同的机理而从包覆光纤放射出紫外线。[0061]在母材拉丝后得到的裸纤110具有纤芯110a和在该纤芯110a的外周面上设置的包层110b。裸纤110在箭头s4所示的方向(在图3是从光纤母材100朝向鼓轮200的方向)移动,由此该裸纤110经过树脂包覆装置300。首先,进入树脂包覆装置300的裸纤110经过导入有树脂(紫外线固化树脂)的模具310,由此在其外周面上包覆树脂110c。接下来,具有树脂110c的裸纤110经过紫外线照射装置330。紫外线照射装置330具有在内部配置有紫外线光源333的框体331。在框体331具有:输入侧开口332a,其用于导入具有树脂110c的裸纤110;以及输出侧开口332b。在从输入侧开口332a向输出侧开口332b移动的期间,对具有树脂110c的裸纤110照射从紫外线光源333输出的紫外线uv。此外,紫外线uv一边其一部分被反射、一边侵入至具有树脂110c的裸纤110内,该外线uv在具有该树脂110c的裸纤110内向任意方向传输(散射光)。如上所述,紫外线uv照射至树脂110c,由此得到包覆光纤120。[0062]在沿箭头s4所示的方向从框体331的输出侧开口332b出来的包覆光纤120(树脂110c固化后)的内部,封闭有在框体331内照射的紫外线uv。因此,从移动至树脂包覆装置300的下游侧的包覆光纤120的表面放射出紫外线uv。在图5示出了如上所述地放射出紫外线uv的部位和物体面op及反射面(平面反射镜20、椭圆面镜50及离轴抛物面镜60)的位置关系。[0063]如上所述,在本发明的包覆状态检测装置500的上游侧已经设置了具有能够将包覆光纤120透过的波长的紫外线uv等的光源的情况下,该包覆状态检测装置500能够经由反射面对来自贯通了反射面的包覆光纤120中的与物体面op交叉的部位的放射光(在图5的例子为紫外线uv)进行检测。[0064]图6是表示将应用了图2的成像光学系统2b的包覆状态检测器(本发明的包覆状态检测装置500)应用于图3的光纤制造装置的具体例的图。此外,也能够应用图2的成像光学系统2b以外的成像光学系统。[0065]如使用图5所说明那样,在树脂包覆装置300(或者树脂包覆装置400)的下游配置本发明的包覆状态检测装置500的结构无需准备外部光源,但还设想到在上游侧的树脂包覆装置300和下游侧的该包覆状态检测装置500分离的结构中无法检测到充分的光量的放射光的情况。在这样的情况下,如图6所示,可以在一面设置有离轴抛物面镜60的引导部件40的附近设置照射出能够将包覆光纤120透过的波长的光的外部光源350。[0066]如图6所示,离轴抛物面镜60设置于引导部件40的一面,在引导部件40设置有将在离轴抛物面镜60设置的输出侧开口61和输入侧开口41连结的引导孔40a。具有树脂110c的包覆光纤120在沿箭头s5所示的方向经过该引导孔40a之后卷绕于鼓轮200。支撑部件42以经过了引导孔40a的包覆光纤120经过离轴抛物面镜60的焦点的方式对引导部件40相对于该包覆光纤120的位置进行固定。此外,离轴抛物面镜60与旋转抛物面62的一部分一致,因此其焦点位于物体面op上。另外,该焦点成为光轴ax和像面ip(在光轴ax上与受光装置600的受光面610一致)的交点c2的共轭点c1。在这里,“与受光面一致”无需是准确地一致,容许0.1μm左右的少许偏差。[0067]在经过了离轴抛物面镜60的输出侧开口61的包覆光纤120中的该离轴抛物面镜60的焦点(物体面op和包覆光纤120交叉的位置)附近,来自包覆光纤120的放射光的一部分在由离轴抛物面镜60准直化后的状态下进行反射。该准直化的反射光从离轴抛物面镜60朝向准直透镜12,通过该准直透镜12而在像面ip上的共轭点c2聚光。该包覆状态检测装置500具有控制部700,该控制部700基于由受光装置600检测出的光强度及对应的位置信息,将视觉性地表现出包覆光纤120的树脂110c的包覆状态的二维图像在监视器上进行显示,因此对描绘部720进行控制(参照图7)。[0068]具体地说,描绘部720如图7所示,根据表示检测对象即包覆光纤120的剖面的浓淡图像而生成监视器画面810,该监视器画面810将分别沿在相当于光纤轴的像面ip上的轴和该像面ip的交点处彼此正交的该像面上的2根正交轴ix、iy显示的光强度分布二维地表现。另外,描绘部720也能够生成监视器画面820,该监视器画面820将沿以相当于光纤轴的像面ip上的轴为中心的圆周方向的光强度分布二维地表现,描绘部720生成它们之中的至少一个。[0069]控制部700除了针对描绘部720的描绘控制(生成将包覆光纤120的树脂110c的包覆状态视觉性地表现的二维图像)以外,还能够进行各种控制。例如,通过对暂时导入至照相机等图像获取装置的图像进行数值解析,从而能够定量地或者动态地对树脂110c的包覆状态进行确定。此外,在能够检测的树脂110c的包覆状态包含树脂(树脂层)110c的厚度偏差状态(包覆光纤120内的裸纤110的偏心状态)、树脂110c内的气泡混入状态、裸纤110和树脂110c的界面处的剥离状态等。另外,通过将检测数据导入至测量仪器,从而能够进行过程控制。即,基于导入的检测数据,能够生成对制造装置等的各部的动作进行调整,用于对树脂包覆条件进行变更的控制信号(控制信息)710。[0070]此外,在树脂包覆条件的变更时例如为了对图3等所示的模具310的姿态进行变更而从控制部700对姿态控制装置320(或者图4的姿态控制装置420)输出控制信号710。具体地说,在控制部700针对树脂包覆装置300的姿态控制中,包含:(1)沿与包覆光纤120的行进方向正交的平面(由彼此正交的x轴及y轴规定的x-y平面)使模具310移动;(2)以x轴为中心沿箭头γx所示的方向使模具310倾斜;以及(3)以y轴为中心沿箭头γy所示的方向使模具310倾斜,等。此外,如上所述的姿态控制在图4的树脂包覆装置400也能同样地进行。[0071]并且,控制部700除了姿态控制以外,也能够进行向树脂包覆装置300的裸纤入口部吹出的喷射气体(例如co2气体)流量的调整,抑制树脂110c内的气泡。另外,控制部700针对配置于树脂包覆装置300的上游侧的冷却装置,输出用于对温度进行变更的控制信号710,由此也能够抑制树脂110c内的气泡。[0072]标号的说明[0073]1a、1b、1c、2a、2b…成像光学系统,10、13、14…成像透镜,11、12…准直透镜,15…光圈,20…平面反射镜,21、51、61、332b…输出侧开口,30、40…引导部件,30a、40a…引导孔,31、41、332a…输入侧开口,32、42…支撑部件,50…椭圆面镜,52…旋转椭圆体的表面,60…离轴抛物面镜,62…旋转抛物面,100…光纤母材,100a…纤芯部,100b…包层部,110…裸纤,110a…纤芯,110b…包层,110c…树脂,120…包覆光纤,130…着色包覆光纤,150…加热器,200、210…鼓轮,300、400…树脂包覆装置,310、410…模具,320、420…姿态控制装置,330、430…紫外线照射装置,331…框体,333…紫外线光源,500…包覆状态检测装置,600…受光装置,610…受光面,700…控制部,710…控制信号,720…描绘部,810、820…监视器画面,op…物体面,ip…像面,ax…光轴,uv…紫外线,c1、c2、c3…共轭点,s1、s2、s3、s4、s5…箭头(方向)。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
包覆状态检测方法、包覆状态检测装置及光纤制造方法与流程
作者:admin
2022-08-27 11:46:27
435
- 下一篇: 含氟有机化合物的制造方法
- 上一篇: 宽带隙半导体装置及宽带隙半导体装置的制造方法与流程