发布信息

一种基于真实数据的动力电池故障在线检测方法及系统

作者:admin      2022-08-27 06:58:25     734



测量装置的制造及其应用技术1.本发明属于电池系统的安全评估领域,具体涉及一种基于真实数据的动力电池故障在线检测方法及系统。背景技术:2.电动汽车运行过程中会出现起火事件,通过对起火事故的分析可知,事故主要的起因有电池的自燃、充电和汽车碰撞,而这些原因所对应的内部机理是电池故障及其进一步引发的热失控。因此提出一种电池系统故障检测和预警方法十分必要。传统的故障诊断方法无法用于定位具体电池,当前常用的可以进行故障定位的方法主要有基于阈值的方法、基于相关系数的方法、基于机器学习的方法和基于熵的方法,但存在着无法识别故障类型、鲁棒性差、易受采样干扰等问题。另外,现有的许多先进故障诊断算法大多数都是基于实验室中静态电池实验进行验证的,不适于实时电池评估,对于真实电动汽车数据的可靠性仍需验证。因此,急需开发一种基于真实车辆数据的动力电池在线故障检测算法,提高预警时效性,促进电动汽车的安全稳定可靠运行。目前电池系统的在线安全诊断方法多为基于单体电池压差阈值的预警手段,容易产生漏报,预警效果较差,而基于大数据云平台的安全预警方法受限于数据采样周期长的原因,时效性较差,存在预警延迟问题。技术实现要素:3.本发明的上述技术问题主要是通过下述技术方案得以解决的:一种基于真实数据的动力电池故障在线检测方法,其特征在于,所述方法包括:设置滑动窗口的长度并采集滑动窗口内的包括有充电电压数据v[]的电池实时数据,并根据所述电池实时数据确定汽车电池单体的使用状态,所述使用状态包括:充电状态和放电状态;根据所述电池实时充电状态数据提取所述电池充电电压数据进行数据清洗,获得清洗处理数据;根据所述清洗处理数据判断当前滑动窗口首次充电前是否发生不一致性故障得到第一判断结果,并获得处理数据;根据所述处理数据计算本滑动窗口内每个采样点的最大压差并标记该情况下最小电压单体编号,得到编号一;根据各电池单体的所述处理数据确定各单体电压曲线和中位电压曲线的 hausdorff 距离,并根据各所述电池单体的 hausdorff 距离确定各电池单体的 hausdorff 距离的改进z-分数;标记大于设定阈值的z分数对应的单体编号二;若编号一和二为同一编号则对应编号单体电池发生故障,否则,重新采集下一滑动窗口mw的充电电压数据。[0004]在上述的一种基于真实数据的动力电池故障在线检测方法,电池实时数据包括总电压vpack[]、总电流i[]、单体电压v[]和串联单体数量n,其中总电压、总电流、单体电压描述为数组形式[]。[0005]在上述的一种基于真实数据的动力电池故障在线检测方法,在当前滑动窗口读取电池系统的实时状态后识别电池状态,若当前窗口内均为充电状态则进行数据清洗,若存在放电状态则重新采集下一滑动窗口内的数据并进行识别,至窗口内均为充电数据;电池状态的识别方法是根据电流值的正负来划分充电状态与放电状态。[0006]在上述的一种基于真实数据的动力电池故障在线检测方法,所述电池充电电压数据进行数据清洗,获得处理数据,具体包括:判断所述电池充电电压数据中是否存在相邻两行数据完全相同,得到第二判断结果;当第二判断结果表示为存在相邻两行数据完全相同,则视为重复记录,删除后一行数据,获得处理数据;当第二判断结果表示为不存在相邻两行数据完全相同,则直接获得处理数据;判断所述电池充电电压数据中是否超过预设电压范围2v-5v,得到第三判断结果;当第三判断结果表示为存在超过预设电压范围的数据,则删除该采样时刻所有数据,获得处理数据;当第三判断结果表示为不存在超过预设电压范围的数据,则直接获得处理数据;判断所述电池充电电压数据中是否存在缺失,得到第四判断结果;当第四判断结果表示为存在电池充电电压数据缺失,则对所述电池充电电压数据进行处理,获得处理数据;当第四判断结果表示为不存在电池充电电压数据缺失,则直接获得处理数据。[0007]在上述的一种基于真实数据的动力电池故障在线检测方法,所述当第四判断结果表示为存在电池充电电压数据缺失,则对所述电池充电电压数据进行处理,获得处理数据,具体包括:判断各所述电池充电电压数据中是否存在连续1min内存在采样数据的缺失,获得第五判断结果;当第五判断结果表示为存在连续1min内存在采样数据的缺失,则直接将缺失时间中的所有数据清除,获得处理数据;当第五判断结果表示为不存在连续1min内存在采样数据的缺失,则判断是否连续出现三个单体数据缺失,获得第六判断结果;当第六判断结果表示为连续出现三个单体数据缺失,则删除该采样时间的所有数据,获得处理数据;当第六判断结果表示为非连续缺失或仅连续缺失两个数据时,则采用相邻单体平均值插补的方法进行缺失值插补,获得处理数据。[0008]在上述的一种基于真实数据的动力电池故障在线检测方法,根据所述处理数据判断当前滑动窗口首次充电前是否发生不一致性故障得到第一判断结果,并获得处理数据,具体包括:判断当前滑动窗口是否为首次充电的滑动窗口,得到第七判断结果;当第七判断结果表示为当前滑动窗口不是首次充电的滑动窗口,则直接将处理数据的值赋给处理数据;当第七判断结果表示为当前滑动窗口是首次充电的滑动窗口,则计算当前滑动窗口中各电芯充电过程中的中位电压值,中位电压值中的最大值、最小值和中位数以及电芯间最大中位电压差,计算公式如下:电芯间最大中位电压差;判断最大中位电压差是否大于等于阈值1,得到第一判断结果;当第一判断结果表示所述最大中位电压差大于等于阈值1,表示所述电池单体的充电电压数据在当前滑动窗口首次充电前存在不一致性故障,则将所在电压曲线起点平移至所在电压曲线的起点,获得处理数据;当第一判断结果表示所述最大中位电压差小于阈值1,表示所述电池单体的充电电压数据在当前滑动窗口首次充电前不存在不一致性故障,则将所述处理数据作为处理数据。[0009]在上述的一种基于真实数据的动力电池故障在线检测方法,根据各电池单体的所述处理数据确定各单体电压曲线和中位电压曲线的 hausdorff 距离,具体包括:计算处理数据中各电芯电压曲线与中位电压曲线的 hausdorff 距离,中位电压曲线即本滑动窗口中每个采样时间下n个电芯端电压中的中位电压构成的曲线;距离值的编号与电芯编号相同,即电芯1电压曲线与中位电压曲线的 hausdorff 距离编号为1,记做, hausdorff 距离的计算公式如下:其中,点集a为各单体电压曲线,表示点集a中的各点,点集b为中位电压曲线,表示点集b中的各点,是点集间的 euclidean 距离,表示集合a到集合b的单向hausdorff距离,表示集合b到集合a的单向hausdorff距离,表示 和 中的较大者,称为双向hausdorff距离。[0010]在上述的一种基于真实数据的动力电池故障在线检测方法,根据各所述电池单体的 hausdorff 距离确定各电池单体的 hausdorff 距离的改进z-分数,对应计算公式如下:下:其中, 表示hd的改进平均数, 表示hd中的最大值, 表示hd的方差。[0011]在上述的一种基于真实数据的动力电池故障在线检测方法,根据各所述电池单体的hausdorff 距离的改进z-分数判断是否发生故障,具体包括:判断各所述电池单体的改进z-分数是否大于等于阈值2,获得第八判断结果;当第八判断结果表示所述改进z-分数值小于阈值2,则确定电池单体未发生故障;当第八判断结果表示所述改进z-分数值大于等于阈值2,则标记该情况下电压单体编号,得到编号二;判断所述编号一与编号二是否相同,获得第九判断结果;当第九判断结果表示所述编号相同时,则确定电池单体发生故障;当第九判断结果表示所述编号不同时,则确定电池单体发生采样错误。[0012]一种系统,适用于权利要求1所述检测方法,其特征在于,包括:第一模块:被配置为用于设置滑动窗口的长度并采集滑动窗口内的包括有充电电压数据v[]的电池实时数据,并根据所述电池实时数据确定汽车电池单体的使用状态,所述使用状态包括:充电状态和放电状态;第二模块:被配置为用于数据清洗,具体是根据电池实时充电状态数据提取所述电池充电电压数据进行数据清洗,获得清洗处理数据;第三模块:被配置为用于判断数据结果,具体是根据所述清洗处理数据判断当前滑动窗口首次充电前是否发生不一致性故障得到第一判断结果,并获得处理数据;根据所述处理数据计算本滑动窗口内每个采样点的最大压差并标记该情况下最小电压单体编号,得到编号一;根据各电池单体的所述处理数据确定各单体电压曲线和中位电压曲线的 hausdorff 距离,并根据各所述电池单体的 hausdorff 距离确定各电池单体的 hausdorff 距离的改进z-分数;标记大于设定阈值的z分数对应的单体编号二;若编号一和二为同一编号则对应编号单体电池发生故障,否则,重新采集下一滑动窗口mw的充电电压数据。[0013]因此,本发明具有如下优点:(1)基于电池系统的实时充电电压数据进行在线监控、故障检测和预警;(2)可在线应用、适合工程应用,可应用于bms上;(3)基于改进z-分数代替固定阈值进行故障检测避免了不同型号车辆的阈值选择问题,更具有普适性。附图说明[0014]附图1是本发明的一种方法流程示意图。具体实施方式[0015]下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。[0016]实施例:本技术方案的实施步骤如附图1所示,利用滑动窗口读取电池系统数据,识别充电电压数据,通过首次充电时电芯间中位电压差值判断是否发生不一致性故障,进而通过平移电压曲线起点消除初始不一致性的影响,再而计算各电芯电压曲线与中位电压曲线的hd,并计算hd的z-分数来进行故障定位,检测到故障后可进行预警。[0017]本技术方案的具体实施步骤如下:(a)设置滑动窗口(moving window, mw)长度,转至步骤(b);mw的大小会影响计算量和对故障的敏感性,需要在实际应用中进行选择,来平衡灵敏度和减小计算量的要求。本专利推荐mw大小为50。[0018](b)在线获取电池系统的实时数据,转至步骤(c);输入的信息包括总电压vpack[]、总电流i[]、单体电压v[]和串联单体数量n,其中总电压、总电流、单体电压描述为数组形式[],下同[]表示数组。[0019](c)在当前mw读取电池系统的实时状态后识别电池状态,若当前窗口内均为充电状态则转至步骤(d),若存在放电状态则转至步骤(k)至窗口内均为充电数据;电池状态的识别方法:根据电流值的正负来划分充电状态与放电状态。[0020](d)提取当前mw中的充电电压数据v[],进行数据清洗,转至步骤(e)。数据清洗方式如下:(i)若存在相邻两行数据完全相同,则视为重复记录,删除后一行数据;(ii)预设电压范围为2v-5v,若数据超出阈值,则删除该采样时刻所有数据;(iii)判断数据是否存在缺失根据不同缺失情况,提出如下两种缺失值处理方法:1)若连续1min内存在采样数据缺失情况由于采样时间为10s,当连续1min时间内,即连续6个采样点数据存在缺失,则直接将缺失时间中的所有数据清除;2)若某一采样时间内部分单体缺失若出现某一采样点内部分单体数据缺失,当连续出现三个单体数据缺失时,删除该采样时间的所有数据;当非连续缺失或仅连续缺失两个数据时,采用相邻单体平均值插补的方法进行缺失值插补。[0021](e) 计算当前滑动窗口中各电芯充电过程中的中位电压值,中位电压值中的最大值、最小值和中位数以及电芯间最大中位电压差,计算公式如下:电芯间最大中位电压差;(f)判断本mw首次充电前是否发生不一致性故障,即第一个充电状态下的mw内是否大于等于阈值1;若大于等于阈值1,则判定电池组存在初始不一致性,将所在电压曲线起点平移至所在电压曲线的起点,得到新的单体电压,然后转至步骤(g);若小于阈值1,则将的值赋给,然后转至步骤(g);若当前非第一个mw,则直接将的值赋给,然后转至步骤(g)。[0022](g)使用单体电压,计算本mw每个采样时刻的所有电芯电压间的最大压差并将压差最大时刻的最小电芯编号存储,转至步骤(j);同时,计算中各电芯电压曲线与中位电压曲线的 hausdorff 距离(hausdorff distance, hd),得到hd[],转至步骤(h);中位电压曲线即本tw中每个采样时间下n个电芯端电压中的中位电压构成的曲线;hd的编号与电芯编号相同,即电芯1电压曲线与中位电压曲线的hd编号为1,记做。[0023](h)计算hd的改进z-分数,转至步骤(i),改进z分数计算公式如下:分数,转至步骤(i),改进z分数计算公式如下:分数,转至步骤(i),改进z分数计算公式如下: (i)根据得到的z-分数,判断z-分数是否大于等于阈值2;若z-分数大于等于阈值2,则存储编号i,转至步骤(j);若z-分数小于阈值2,则预警输出结果为:未发生故障,转至步骤(k)。[0024](j)进行故障定位,判断是否与相等;若相等,则预警输出结果为:电芯i发生内短路故障;若不相等,则预警输出结果为:发生采样错误,转至步骤(k)。[0025](k)mw移至下一窗口,转至步骤(b);如此循环。[0026]本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。









图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!




免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

相关内容 查看全部