金属材料;冶金;铸造;磨削;抛光设备的制造及处理,应用技术用于由具有受控冷却的物理气相沉积(pvd)来沉积铝的方法和设备技术领域1.本公开的实施例总体涉及基板处理技术,并且更具体地涉及在pvd工艺期间沉积铝的方法。背景技术:2.在半导体器件(诸如集成电路)中,互连件用于连接和集成器件的各种部件。通常,器件由多层导电部件组成,由绝缘材料隔开,以帮助最小化信号路径并减小器件尺寸。为了在各层之间建立连续性,导电互连件(接触件或通孔)在绝缘层之间延伸并连接导电层。因此,互连件是以导电材料填充的垂直开口,所述导电材料用于将器件的各种层上的部件彼此连接并连接到半导体基板。3.随着半导体器件的集成度增加,互连件的尺寸减小,且互连件的深宽比(即,互连件的高度与宽度的比)增加。因此,过去足以填充互连件的方法已被证明不足以用于更小的互连件。通常,互连孔使用金属材料(诸如铜)填充,所述金属材料通过化学气相沉积(cvd)、物理气相沉积(pvd)、电镀或其组合沉积在孔内部。4.集成电路(ic)中的互连件分配时钟和其他信号,并且向电路中的各个部分提供电源/接地。随着ic特征尺寸的持续按比例缩小,互连件成为确定系统性能(例如信号传播延迟和功耗,这些都与互联线电阻有关)的主要因素。在过去的20年中,由于铜(cu)的低电阻率,cu已成为互连件的首选材料。然而,发明人已经观察到铜可能在低温下与硅有问题地相互作用或扩散到周围的电介质中。通常需要阻挡层来防止扩散,这将不利于cu的整体电阻率。发明人已经观察到需要寻找用于ic互连件中的铜的替代材料。5.此外,虽然已经使用长的沉积腔室来将铝用于在互连件中填充和覆盖特征,但是由于长的沉积腔室沉积物有问题地缺乏均匀的铝覆盖,因此特征和相邻场的铝覆盖率较差。发明人已经观察到较差的铝覆盖性能降低了由此形成的互连件的可靠性。发明人还观察到,沉积在半导体基板顶部的铝的快速冷却不利于膜的质量,并且有问题地导致以下状况:小晶粒尺寸导致铝线断裂和较差产率;较差的反射率值不利地影响下游的沉积后处理;铝-硅(al-si)薄膜中的硅沉淀(precipitation)导致较差的膜粗糙度和沉淀;以及用ac偏压处理增加的应力导致高翘曲。6.因此,发明人提供了用于在基板上形成铝材料的改进方法,以及改善特征(诸如通孔)的铝覆盖率的方法。技术实现要素:7.本文提供了在基板上形成铝材料并增加铝材料的覆盖率的实施例。在一些实施例中,一种在反应器腔室中执行物理气相沉积以在基板上形成铝材料的方法包括以下步骤:在基板的顶部上沉积第一铝层以形成具有第一晶粒尺寸和第一温度的第一铝区域;以及以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板顶部上的第一铝区域冷却到第二温度。8.在一些实施例中,本公开涉及一种在反应器腔室中在定位于铝溅射靶下方的工件支撑件上的基板上执行物理气相沉积的方法,所述方法包括以下步骤:在经加热的工件支撑件的顶部上,将基板维持在200℃至400℃的第一温度以及低于10毫托的第一压力下;通过向铝溅射靶施加约4kw至60kw的第一dc功率和至少600w的第一ac靶偏压功率来从铝溅射靶溅射原子;维持反应条件达足以形成具有第一晶粒尺寸的第一铝层的持续时间;将基板的冷却延迟达第一持续时间;以及以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将第一铝层冷却到第二温度。9.在一些实施例中,本公开涉及一种物理气相沉积腔室,所述物理气相沉积腔室包括反应腔室,所述反应腔室配置成用于在基板的顶部上物理气相沉积第一铝层以形成具有第一晶粒尺寸和第一温度的第一铝区域;以及以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板顶部上的第一铝区域冷却到第二温度。10.在一些实施例中,本公开涉及一种计算机可读介质,所述计算机可读介质具有存储在其上的指令,所述指令在被执行时使物理气相沉积反应器腔室执行在反应器腔室中物理气相沉积以在基板上形成铝材料的方法,所述方法包括以下步骤:在基板的顶部上沉积第一铝层以形成具有第一晶粒尺寸和第一温度的第一铝区域;以及以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板顶部上的第一铝区域冷却到第二温度。11.下面描述本公开的其他和进一步的实施例。附图说明12.可以通过参考附图中描绘的本公开的说明性实施例来理解以上简要概述并在以下更详细讨论的本公开的实施例。然而,附图仅示出了本公开的典型实施例,并且因此不应视为对范围的限制,因为本公开可允许其他等效的实施例。13.图1描绘根据本公开的一些实施例的用于处理基板的方法的流程图。14.图2a至图2d描绘根据本公开的一些实施例的填充高深宽比开口的阶段。15.图3描绘根据本公开的一些实施例的物理气相沉积(pvd)腔室的示意性截面图。16.图4描绘根据本公开的一些实施例的用于处理基板的另一种方法的流程图。17.图5描绘根据本公开的一些实施例的物理气相沉积(pvd)腔室的示意性截面图。18.图6描绘根据本公开的一些实施例的用于处理基板的另一种方法的流程图。19.图7描绘根据本公开的一些实施例的物理气相沉积(pvd)腔室的示意性截面图。20.图8描绘根据本公开的一些实施例的用于处理基板的另一种方法的流程图。21.为便于理解,在可能的情况下,使用相同的附图标记表示附图中相同的要素。为清楚起见,附图未按比例描绘且可被简化。一个实施例中的要素与特征可有利地结合在其他实施例中而无需进一步叙述。具体实施方式22.本文提供了在基板上形成铝材料的实施例。发明人已经将铝包括在ic互连件中,且通过延长沉积之后的铝晶粒生长来改善互连结构中铝的使用和覆盖率。在实施例中,第一事件沉积具有与随后测量的相同材料的晶粒尺寸相比较小晶粒尺寸的铝。通过延迟和/或控制所沉积的铝的沉积后冷却,延长了铝的晶粒生长周期,从而得到更大的铝晶粒尺寸和改善的铝膜。在一些实施例中,在反应器腔室中执行物理气相沉积以在基板上形成铝材料的方法包括以下步骤:在基板的顶部上沉积第一铝层以形成具有第一晶粒尺寸和第一温度的第一铝区域;以及以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板顶部上的第一铝区域冷却到第二温度。23.所述方法的实施例可有利地提供基板表面的连续覆盖,例如具有改善的覆盖率和/或低电阻率的铝材料的高深宽比特征。本公开的实施例通过以小的晶粒尺寸开始,延长铝沉积后的晶粒生长周期,以有利地提供基板表面的连续覆盖。在一些实施例中,通过以小的晶粒尺寸开始以及以更大的晶粒尺寸结束,在铝膜生长期间发生了更多的晶粒聚结事件,从而改善了铝的迁移性(mobility)、增强铝的覆盖率并防止线破裂(line breakage)。在一些实施例中,随着所沉积的铝膜的反射率值的改善,下游的沉积后工艺得以改善。在一些实施例中,减小了膜的粗糙度并且避免了硅的沉淀。在一些实施例中,减小了膜应力,从而降低翘曲。在实施方式中,通过延迟所沉积的铝的快速冷却来改善铝膜质量。在一些实施例中,可如本文所述在铝沉积工艺和沉积后工艺序列期间增大晶粒尺寸,以解决下游热处理之后的铝垫异常和/或避免凸起(hillock)形成。24.图1描绘根据本公开的一些实施例的用于在基板200上形成铝材料的方法100的流程图。尽管下面相对于填充如图2a至图2d所描绘的高深宽比特征的阶段描述了方法100,但是本文提供的公开内容可以用于将铝材料作为薄片或覆盖层(blanket)沉积在基板上或基板顶部上,例如,不具有诸如高深宽比特征之类的特征。另外,本文提供的公开内容还可以用于填充具有高深宽比之外的其他深宽比的特征。在一些实施例中,铝材料可在基板上形成为薄片或覆盖层,并经受额外的工艺流程,诸如蚀刻、填充和/或封顶。方法100可在具有dc、ac和/或射频(rf)电源的任何合适的pvd处理腔室(诸如下面描述并在图3中描绘的处理腔室300)中执行。25.在实施例中,图1的方法100在102处通过以下步骤开始:在基板顶部上沉积第一铝层以形成具有第一晶粒尺寸和第一温度的第一铝区域。在实施例中,通过延迟基板和第一铝层的冷却,延长了用于铝沉积的晶粒生长时间。26.参照图2a,可将基板200提供给pvd腔室(诸如处理腔室300)。在实施例中,基板200包括高深宽比的开口,诸如形成在基板200的第一表面204中且朝向基板200的相对的第二表面206延伸到基板200中的开口202。基板200可以是任何合适的基板,包括但不限于在其上形成有高深宽比开口的基板。例如,基板200可包括硅(si)、(sio2)、(sin)或其他介电材料中的一种或多种。在实施例中,基板可以可选地包括薄金属层(诸如tin氮化钽(tan))或其他层。另外,基板200可以可选地包括额外的材料层,或者可具有在其中或其上形成的一个或多个完成或部分完成的结构。27.在一些实施例中,开口202可以是具有高深宽比的任何开口,诸如用于形成通孔、沟槽、双镶嵌结构等。在一些实施例中,开口202可具有至少约5∶1的高度比宽度的深宽比(诸如高深宽比)。例如,在一些实施例中,深宽比可以是约10:1或更大,诸如约15:1或更大。可通过使用任何合适的蚀刻工艺来蚀刻基板来形成开口202。开口202包括如图所示的底表面208和侧壁210。28.在一些实施例中,如下所述,在沉积铝原子之前,底表面208和侧壁210可以可选地被一层或多层覆盖。例如,且如图2a中的虚线所示,开口202的底表面和侧壁以及基板200的第一表面可被介电层或氧化物层212覆盖,如氧化硅(sio2)、(si)、(sin)或其他介电材料。在将基板200提供给pvd腔室之前,可例如在化学气相沉积(cvd)腔室或氧化腔室中沉积或生长氧化物层。介电层或氧化物层212可用作基板和随后待沉积在开口中的含铝层之间的电和/或物理阻挡层,和/或可用作比基板的原生表面更好的在下面讨论的沉积工艺期间用于附着的表面。在实施例中,可使用氧化物以外的材料代替氧化物层212。29.在一些实施例中,阻挡层214可以可选地沉积在氧化物层212的顶部上(如图所示)或介电层的顶部上,或者如果氧化物层不存在,则阻挡层214可以可选地沉积在开口的底表面和侧壁以及基板的第一表面的顶部上。阻挡层214可用作与以上讨论的介电层或氧化物层212中任一者相似的目的。在一些实施例中,阻挡层214可包括以下各项中的至少一者:钛(ti)、氮化钛(tin)、钽(ta)、氮化钽(tan)或其他材料。可通过任何合适的方法(诸如通过cvd或pvd)来沉积阻挡层214,包括通过使用以下描述的方法100以在开口202中形成连续的阻挡层。30.在一些实施例中,开口202可完全延伸穿过基板200,且第二基板218的表面216可形成开口202的底表面208。第二基板218可邻近基板200的第二表面206设置。在实施例中,需要电连通(诸如栅极、接触垫、导电通孔等)的器件(诸如逻辑器件等)或器件的部分可设置在第二基板的表面216中并与开口202对准。31.在102处,可在pvd腔室(图3)中发生在基板200顶部上的铝层的沉积,其中将约4千瓦(kw)至60kw的第一dc功率施加至铝溅射靶,以由等离子体形成气体来形成等离子体,并且可将至少600w的第一ac靶偏压功率施加到例如包括基板或工件的基座。在一些实施例中,靶可以是包括铝或由铝组成的靶306。此外,靶可包括适合在开口202的表面与基板200的第一表面204上形成第一铝层220的铝合金(诸如包括0.5%的铜的纯铝、或包括0.5%的硅的纯铝等)中的一种或多种。其他成分(诸如金属)可以以少于总靶重量的1%重量的量存在,所述成分诸如钛(ti)、钽(ta)、铜(cu)等。等离子体形成气体可包括惰性气体,诸如稀有气体或其他惰性气体。例如,合适的等离子体形成气体的非限制性示例可包括氩(ar)、氦(he)、氙(xe)、氖气(ne)等。在实施例中,等离子体形成气体(诸如处理气体)是流速为约50sccm至350sccm的氩(ar)。在一个实施例中,等离子体形成气体是流速为约70sccm的氩(ar)。32.在102处,可在pvd腔室中发生在基板200顶部上的第一铝层220的沉积(如图2b所示),其中可以可选地以vhf频率施加rf功率以用于以下各项中的一者或多者:由等离子体形成气体来形成等离子体以及通过等离子体将从靶溅射出的金属原子离子化。如本文所使用的,vhf频率是从约13mhz到约100mhz的范围内的频率,诸如13.56mhz。在一些实施例中,所施加的vhf频率为约60mhz。例如,增加vhf频率可能会增加等离子体密度。在一些实施例中,可以以0.5kw至3kw(诸如1kw、1.25kw、2.5kw或3kw)施加rf功率。33.在102处,可在pvd腔室中发生在基板200顶部上的第一铝层的沉积,其中可以例如从如下所述的耦接至靶306的dc电源320将dc功率施加到靶306以将等离子体引导向靶306。dc功率最初可在约1千瓦到约60千瓦(kw)的范围内。在一些实施例中,dc功率可以是约10-50kw,或约20kw、30kw或40kw。可调整dc功率以控制基板200上溅射的铝原子的沉积速率。在实施例中,在本公开的条件下的dc功率可以导致在基板顶部上的第一铝层220,从而形成具有第一晶粒尺寸的第一铝区域221,其中可以使晶粒尺寸的尺寸更小。通过减小铝沉积期间的初始晶粒尺寸,可延长晶粒生长周期。在一些实施例中,在基板200顶部上沉积第一铝层220以形成具有第一晶粒尺寸和第一温度的第一铝区域221,其中第一温度为约200摄氏度至400摄氏度。34.在102处,可在pvd腔室中发生在基板200顶部上的第一铝层的沉积以形成具有第一晶粒尺寸和第一温度的第一铝区域221,其中在维持pvd腔室中的第一压力的同时,使用等离子体从靶306溅射铝原子。除了所施加的第一ac功率和dc功率之外,第一压力还可取决于处理腔室的几何形状(诸如基板尺寸、靶至基板的距离等)。例如,在配置有靶的腔室中,第一压力可小于10毫托(mtorr)或在约0.2(mtorr)至约10(mtorr)的范围内。在实施例中,腔室可以可选地配置有约35毫米到90毫米(mm)的靶到基板的间隙。在一些实施例中,第一压力为约0.5毫托至约5毫托或2毫托。可通过等离子体形成气体的流速和/或可与等离子体形成气体共同流动的附加气体(诸如惰性气体)的流速来维持腔室中的第一压力。第一压力可在靶与基板之间提供高密度的气体分子,溅射的铝原子可与高密度的气体分子碰撞并被离子化。可附加地利用压力来控制从靶306溅射出的铝原子的量。例如,靶306到基板的间隙中的低压可减小第一铝层220的晶粒尺寸。35.在102处,在一个实施例中,可在氩(ar)等离子体下、以约50至350sccm(诸如70sccm)的流量、具有小于10毫托的处理压力、以1-60kw dc功率或约600w至1200w ac功率(诸如作为偏压功率施加于基板支撑基座的rf)的pvd腔室中在基板200顶部上发生第一铝层220的沉积,以形成具有第一晶粒尺寸和第一温度的第一铝区域221。在实施例中,温度低于350摄氏度。在102处,在一个实施例中,可在ar等离子体下、在低于350摄氏度的温度下、具有小于10毫托的处理压力、在4-60kw dc的功率和600w至1200w的大ac偏压下的pvd腔室中在基板200的顶部上发生第一铝层220的沉积。在实施例中,第一铝层220形成第一铝层220限定的区域,在所述区域中,晶粒尺寸的特征在于是小的,例如约2微米或更小。36.在一些实施例中,在102处,可在pvd腔室中在基板200顶部上发生第一铝层220的沉积以形成具有第一晶粒尺寸和第一温度的第一铝区域221,同时在经加热的工件支撑件顶部上,将基板维持在200℃至400℃的第一温度和低于10毫托的第一压力下,同时通过向铝溅射靶施加约4kw至60kw的第一dc功率和至少600w的第一ac靶偏压功率来从铝溅射靶溅射原子。37.在实施例中,将反应条件维持达足以形成具有第一晶粒尺寸的第一铝层以及可选的具有大于第一晶粒尺寸的第二晶粒尺寸的第二铝层的持续时间。参照图2c,示出为与第一表面204顶部上的第一铝层220相邻的可选的第二铝层222。在一些实施例中,随着铝沉积的进行,铝晶粒尺寸在过渡或过渡阶段逐渐变大。38.在一些实施例中,在102处,可在pvd腔室中在基板200顶部上发生第一铝层220的沉积以形成具有第一晶粒尺寸和第一温度的第一铝区域221,在所述pvd腔室中,如图2b中所示,第一多个铝原子221沉积在基板200的第一表面204上并沉积在开口202的底表面208上。可使用上面讨论的处理条件(诸如第一温度、第一压力、第一ac或rf功率以及dc功率)来沉积第一多个铝原子221,以近乎垂直于基板200来溅射铝原子221,如图2b所示。在一些实施例中,可在沉积第一多个铝原子221期间,将ac功率施加到基板200(例如,施加到设置在基板200下方(诸如在基板支撑件内)的电极)。可以以在约0.5mhz到约13.56mhz范围内的频率且以高达1200w或约600w到1200w的功率来施加ac功率(诸如rf偏压功率)。在一些实施例中,可以以0.5kw至3kw(诸如1kw、1.25kw、2.5kw或3kw)施加rf偏压功率。在实施例中,增加的ac偏压功率促进轰击基板表面的正离子的吸引力,从而抑制聚结并抑制铝晶粒生长,导致在第一铝层中形成相对小的al晶粒。39.在一些实施例中,可同时使用第一rf偏压功率和第二rf偏压功率(诸如rf偏压功率),第一rf偏压功率可用于控制基板200附近的离子能量,而第二rf偏压功率可用于控制基板200附近的离子能量的分布。40.在一些实施例中,在102处,用于沉积铝层的温度可以为200摄氏度至400摄氏度,诸如100摄氏度至250摄氏度。在一些实施例中,在102处,第一铝层220形成到预定厚度。在实施例中,第一铝层220和第一铝区域221的厚度为约1-5微米,诸如1微米,或约1.5微米。在实施例中,在沉积约1.5微米的铝之后,晶粒生长可加速。41.返回参考图1,在104处,在实施例中,例如,在基板的顶部上形成第一铝层以形成具有第一晶粒尺寸的第一铝区域221之后,以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板200顶部上的第一铝区域221冷却到第二温度。在一些实施例中,冷却包括将冷却延迟达第一持续时间。例如,在沉积之后,工艺可暂停达诸如4秒至120秒的持续时间以冷却基板和所沉积的铝。在一些实施例中,第一持续时间为约5秒至120秒。在一些实施例中,以每秒10摄氏度到40摄氏度(诸如每秒约20摄氏度)的冷却速率执行冷却。在一些实施例中,第一温度大于375摄氏度至450摄氏度,且第二温度小于100摄氏度。在一些实施例中,通过将基板从经加热的表面移开来执行冷却。在一些实施例中,冷却步骤包括以下步骤:延迟将基板顶部上的第一铝区域传送到快速冷却腔室。在一些实施例中,以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板顶部上的第一铝区域冷却到第二温度的步骤进一步包括以下步骤:增加邻近基板的背侧的气流以冷却基板。42.在一些实施例中,在104处,用于冷却的温度为低于第一温度的温度。在一些实施例中,冷却将基板的温度从约375摄氏度至450摄氏度降低到约100摄氏度。43.在一些实施例中,在冷却之后,额外的铝材料250可被沉积并形成到预定厚度。在实施例中,铝材料250(图2d)具有约1-5微米(诸如1微米或3微米)的厚度。在实施例中,根据本公开,使额外的铝材料经受冷却。在一些实施例中,根据本公开,额外的铝材料在冷却时经受延迟。44.在一些实施例中,在形成铝材料250之后,方法100可结束,或者基板200可继续进行进一步处理。进一步处理的示例可选地包括对基板200进行退火。在一些实施例中,退火的特征在于是非原位的。在实施例中,可在约20巴的压力下在约500摄氏度至700摄氏度(诸如550摄氏度)的温度下执行退火达约10分钟。在实施例中,可在例如退火腔室中执行退火。45.参照图2d,在一些实施例中,在执行上述102-104之前,可提供第二基板218。因此,如图2d所示,第二基板218可邻近基板200的第二表面206设置,其中开口202完全延伸穿过基板200,且第二基板218的表面216形成开口202的底表面。此外,器件或导电特征234可设置在第二基板中并在表面216处暴露,其中器件或导电特征234与开口202对准。可进一步处理基板200的第一表面204以去除沉积的铝原子。例如,化学机械抛光技术、蚀刻等可用于从第一表面204去除沉积的铝原子,如图2d所示。46.图3描绘根据本公开的一些实施例的物理气相沉积腔室(处理腔室300)的示意性截面图。合适的pvd腔室的示例包括可从加利福尼亚州圣克拉拉市的应用材料公司商购的exectatm al pvd处理腔室。来自应用材料公司或其他制造商的其他处理腔室也可从本文公开的设备中受益。47.处理腔室300包含用于在其上接收基板304(诸如工件)的基板支撑基座302,以及溅射源(诸如靶306)。基板支撑基座302可位于接地的腔室壁308内,接地的腔室壁308可以是腔室壁(如图所示)或接地的屏蔽件(接地屏蔽件340示出为覆盖靶306上方的处理腔室300的至少一些部分。在一些实施例中,接地屏蔽件340可在靶下方延伸以也包围基座302。)48.在一些实施例中,处理腔室包括用于将rf和dc能量耦接至靶306的馈送结构。馈送结构是用于将rf和dc能量耦接至靶或耦接至包含例如本文所述的靶的组件的设备。馈送结构的第一端可以耦接到可选的rf电源318和dc电源320,可选的rf电源318和dc电源320可以分别用于向靶306提供rf和dc能量。例如,dc电源320可用于向靶306施加负电压或偏压。在一些实施例中,可选地由rf电源318供应的rf能量可以适合于提供如上所述的频率或者在约2mhz至约60mhz的频率范围内,或者可以使用例如非限制性频率,诸如2mhz、13.56mhz、27.12mhz或60mhz。在一些实施例中,可以可选地提供多个rf电源(即,两个或更多个rf电源)以提供在多个上述频率的rf能量。馈送结构可由合适的导电材料制成,以传导来自rf电源318和dc电源320的rf和dc能量。在实施例中,排除rf电源318,且dc电源320配置成向靶306施加负电压或偏压。49.在一些实施例中,馈送结构可具有合适的长度,所述合适的长度有利于各个rf和dc能量围绕馈送结构的周边基本上均匀分布。例如,在一些实施例中,馈送结构的长度可在约1英寸到约12英寸之间,或约4英寸。在一些实施例中,主体的长度与内直径的比率可为至少约1:1。提供至少1:1或更长的比率提供从馈送结构更均匀的rf传输(即,rf能量在馈送结构周围更均匀地分布,以近似于rf耦接到馈送结构的真实中心点)。馈送结构的内直径可以尽可能小,例如,直径为约1英寸至约6英寸,或约4英寸。提供较小的内直径有助于提高长度与id的比率,而不需要增加馈送结构的长度。50.馈送结构的第二端可耦接到源分配板322。源分配板包括孔324,孔324穿过源分配板322设置并与馈送结构的中心开口对准。源分配板322可由合适的导电材料制成,以传导来自馈送结构的rf和dc能量。51.源分配板322可经由导电构件325耦接至靶306。导电构件125可以是具有第一端326的管状构件,第一端326耦接至靠近源分配板322的外周边缘的源分配板322的面向靶的表面328。导电构件325进一步包括第二端330,第二端330耦接至靠近靶306的外周边缘的靶306的面向源分配板的表面332(或耦接至靶306的背板346)。52.腔334可由导电构件325的面向内部的壁、源分配板322的面向靶的表面328以及靶306的面向源分配板的表面332限定。腔334经由源分配板322的孔324流体地耦接到主体的中心开口315。腔334和主体的中心开口315可用于至少部分地容纳如图3所示且在下面进一步描述的可旋转的磁控管组件336的一个或多个部分。在一些实施例中,可至少部分地以冷却流体(诸如水(h2o)等)填充腔。53.可提供接地屏蔽件340以覆盖处理腔室300的盖件的外表面。接地屏蔽件340可例如经由腔室主体的接地连接而耦接至接地。接地屏蔽件340具有中心开口,以允许馈送结构穿过接地屏蔽件340以耦接到源分配板322。接地屏蔽件340可包括任何合适的导电材料,诸如铝、铜等。在接地屏蔽件340与源分配板322的外表面、导电构件325和靶306(和/或背板346)之间提供绝缘间隙339,以防止rf和dc能量被直接路由至接地。可用空气或一些其他合适的介电材料(诸如陶瓷、塑料等)来填充绝缘间隙。54.在一些实施例中,接地套环可围绕馈送结构的主体和下部设置。接地套环耦接到接地屏蔽件340,且接地套环可以是接地屏蔽件340的组成部分或者可以是耦接到接地屏蔽件的单独部分,以提供馈送结构的接地。接地套环可由合适的导电材料(诸如铝或铜)制成。在一些实施例中,在接地套环的内直径与馈送结构的主体的外直径之间设置的间隙可保持最小且恰好足以提供电隔离。可以用像塑料或陶瓷之类的绝缘材料填充所述间隙,或者所述间隙可以是气隙。接地套环防止rf馈送(例如下面讨论的电馈送205)与主体之间的串扰,由此改善等离子体和处理的均匀性。55.隔离板338可设置在源分配板322和接地屏蔽件340之间,以防止rf和dc能量直接接线至地面。隔离板338具有中心开口,以允许馈送结构穿过隔离板338并耦接到源分配板322。隔离板338可包括合适的介电材料,诸如陶瓷、塑料等。替代地,可提供气隙代替隔离板338。在提供气隙代替隔离板的实施例中,接地屏蔽件340可在结构上足够稳固以支撑静置在接地屏蔽件340上的任何部件。56.可通过介电隔离器344将靶306支撑在接地的导电铝适配器(诸如342)上。靶306包括在溅射期间待沉积在基板304上的材料,诸如铝或铝合金。在一些实施例中,背板346可耦接至靶306的面向源分配板的表面332。背板346可包括导电材料(诸如铝)或与靶相同的材料,使得rf和dc功率可以经由背板346耦接到靶306。替代地,背板346可以是不导电的,且可包括诸如电馈通等的导电元件(未图示)以用于将靶306的面向源分配板的表面332耦接至导电构件325的第二端330。可包括背板346以例如改善靶306的结构稳定度。57.基板支撑基座302具有面向靶306的主表面的材料接收表面,并将待溅射涂覆的基板304支撑在与靶306的主表面相对的平面位置。基板支撑基座302可在处理腔室300的中心区域348中支撑基板304。中心区域348定义为在处理期间在基板支撑基座302上方的区域(例如,在处理位置中时在靶306和基板支撑基座302之间)。58.在一些实施例中,基板支撑基座302可通过连接到底部腔室壁352的波纹管350可垂直移动,以允许将基板304通过处理腔室300下部中的装载锁定阀(未图示)传送到基板支撑基座302上,然后升至沉积或处理位置。一个或多个处理气体可通过质量流量控制器356从气体源354供应到处理腔室300的下部分。可提供排气口358,且经由阀360将排气口358耦接至泵(未图示),以用于对处理腔室300的内部进行排气并有助于维持处理腔室300内部的所需压力。59.在一些实施例中,基板支撑基座包括用于向基板304提供背侧气体的空气通道371。在实施例中,关闭空气通道371并限制施加到基板304的背侧气体的流动将增加基板304的温度。60.在一些实施例中,rf偏压电源362可以可选地耦接到基板支撑基座302,以在基板304上引起负dc偏压。另外,在一些实施例中,在处理期间,负dc自偏压可在基板304上形成。例如,由rf偏压电源362提供的rf功率的频率范围可从约2mhz到约60mhz,例如,可以使用非限制性频率,诸如2mhz、13.56mhz或60mhz。此外,第二rf偏压电源363可耦接到基板支撑基座302,并提供以上讨论的任何频率以用于单独使用或可选地与rf偏压电源362一起使用。在实施例中,调谐网络399可定位在rf偏压电源363和基板支撑基座之间。在实施例中,第二调谐网络398可定位在rf电源362与基板支撑基座之间。在实施例中,第二rf偏压电源363配置成提供ac偏压功率以降低离子能量,从而导致铝与具有第二晶粒尺寸的第二铝层聚结以增加第二晶粒尺寸。在其他应用中,基板支撑基座302可接地或保持电浮动。例如,对于可能不需要rf偏压功率的应用,可将电容调谐器364耦接到基板支撑基座,以用于调整基板304上的电压。61.可旋转的磁控管组件336可定位成靠近靶306的背表面(例如,面向源分配板的表面332)。可旋转的磁控管组件336包括由底板368支撑的多个磁体366。底板368连接至与处理腔室300和基板304的中心轴重合的旋转轴370。电机372可以耦接到旋转轴370的上端以驱动磁控管组件336的旋转。磁体366在处理腔室300内产生大致平行于靶306的表面并靠近靶306的表面的磁场,以捕获电子并增加局部等离子体密度,这进而增加了溅射速率。磁体366在处理腔室300的顶部周围产生电磁场,且旋转磁体366以旋转电磁场,这影响工艺的等离子体密度,以更均匀地溅射靶306。例如,旋转轴370可以以每分钟旋转约0转到约150转。62.在一些实施例中,处理腔室300可进一步包括连接至适配器342的凸耳(ledge)376的处理套件屏蔽件374。适配器342进而被密封并接地到铝腔室侧壁(诸如腔室壁308)。通常,处理套件屏蔽件374沿着适配器342的壁和腔室壁308向下延伸到基板支撑基座302的上表面下方,并向上返回直到到达基板支撑基座302的上表面(例如,在底部形成u形部分384)。替代地,处理套件屏蔽件的最底部不必是u形部分384,且可具有任何合适的形状。当基板支撑基座302处于下部装载位置时,盖环386静置在处理套件屏蔽件374的向上延伸的唇部388的顶部上,但是当基板支撑基座302处于上部沉积位置时,盖环386静置在基板支撑基座302的外周边上,以保护基板支撑基座302免受溅射沉积。可使用额外的沉积环(未图示)以屏蔽基板304的外周免受沉积。下面根据本公开讨论处理套件屏蔽件的实施例。63.在一些实施例中,磁体390可设置在处理腔室300周围,以用于在基板支撑基座302和靶306之间选择性地提供磁场。例如,如图3中所示,当处于处理位置时,磁体390可设置在恰好在基板支撑基座302上方的区域中的腔室壁308的外部周围。在一些实施例中,磁体390可附加地或替代地设置在其他位置,诸如邻近适配器342。磁体390可以是电磁体,且可耦接至电源(未图示),以用于控制由电磁体产生的磁场的大小。64.可提供控制器310并将控制器310耦接到处理腔室300的各种部件以控制其操作。控制器310包括中央处理单元(cpu)312、存储器314和支持电路316。控制器310可直接控制处理腔室300,或者经由与特定处理腔室和/或支持系统部件相关联的计算机(或控制器)来控制处理腔室300。控制器310可以是可以在工业环境中用于控制各种腔室与子处理器的任意形式的通用计算机处理器中的一者。控制器310的存储器或计算机可读介质434可以是容易获得的存储器中的一者或多者,诸如随机存取存储器(ram)、只读存储器(rom)、软盘、硬盘、光存储介质(例如光盘或数字视频盘)、闪存驱动器或任何其他形式的、本地的或远程的数字存储。支持电路316耦接至cpu 312耦接以用于传统方式支持处理器。这些电路包括高速缓存、电源、时钟电路、输入/输出电路系统与子系统等。如本文所述的方法可作为软件例程存储在存储器314中,所述软件例程可被执行或调用来以本文所述的方法控制处理腔室300的操作。软件例程还可由第二cpu(未图示)存储和/或执行,第二cpu远离由cpu 312控制的硬件定位。65.在实施例中,本文已经提供了用于沉积在基板上形成的高深宽比特征中的铝的方法。通过延长沉积铝之后的晶粒生长周期,所述方法有利地用铝极好地覆盖高深宽比特征的表面。在一些实施例中,本公开提供了物理气相沉积腔室,所述物理气相沉积腔室包括反应腔室,所述反应腔室配置成用于在基板顶部上物理气相沉积第一铝层以形成具有第一晶粒尺寸和第一温度的第一铝区域;以及以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板顶部上的第一铝区域冷却到第二温度。在一些实施例中,反应腔室配置成邻近基板的背侧提供气流以冷却基板。在一些实施例中,通过将基板从经加热的表面移开来执行冷却。66.在一些实施例中,本公开提供了计算机可读介质,所述计算机可读介质具有存储在其上的指令,所述指令在被执行时使物理气相沉积反应器腔室执行包括以下步骤的方法:在基板的顶部上沉积第一铝层以形成具有第一晶粒尺寸和第一温度的第一铝区域;以及以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板顶部上的第一铝区域冷却到第二温度。67.现在参考图4,在反应器腔室中在定位于铝溅射靶下方的工件支撑件上的基板上执行物理气相沉积的方法400。在实施例中,方法400包括在402处,将基板维持在200摄氏度至400摄氏度的第一温度。在一些实施例中,在404处,方法400包括通过向铝溅射靶施加约4kw至60kw的第一dc功率和至少600w的第一ac靶偏压功率来从铝溅射靶溅射原子。在实施例中,ac靶偏压功率是从第二rf偏压电源363产生的。68.在一些实施例中,方法400包括在406处,维持反应条件达足以形成具有第一晶粒尺寸的第一铝层的持续时间。例如,在实施例中,可形成包括小晶粒尺寸的第一区域。在实施例中,小晶粒尺寸平均可以为约1.5微米。69.在一些实施例中,方法400包括在408处,将基板的冷却延迟达第一持续时间。在一些实施例中,第一持续时间可以是约5秒至120秒,诸如20秒、30秒、40秒等。在一些实施例中,延迟步骤包括以下步骤:延迟将包括第一铝层的基板传送到快速冷却腔室。70.在一些实施例中,方法400包括在410处,将第一铝层冷却至第二温度。在一些实施例中,以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率执行冷却。在一些实施例中,冷却步骤包括以下步骤:延迟将包括第一铝层的基板传送到快速冷却腔室。在实施例中,根据本公开,传送的延迟延长了冷却时间的量,和/或控制了冷却。在实施例中,冷却将温度降低到约100摄氏度,诸如98摄氏度到102摄氏度的量的温度。在一些实施例中,根据本公开的冷却使所沉积的铝的晶粒尺寸增加3%至40%,诸如3%至25%或3%至15%。在一些实施例中,第二晶粒尺寸平均大于2.5微米,或平均为2微米至4微米。71.在一些实施例中,本公开提供了在反应器腔室中执行物理气相沉积以在基板上形成铝材料的方法,所述方法包括以下步骤:在基板的顶部上沉积第一铝层以形成具有第一晶粒尺寸和第一温度的第一铝区域;以及以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板顶部上的第一铝区域冷却到第二温度。在一些实施例中,所述方法进一步包括以下步骤:将冷却延迟达第一持续时间。在一些实施例中,第一持续时间为约5秒至120秒。在一些实施例中,以每秒10摄氏度至40摄氏度的冷却速率执行冷却。在一些实施例中,第一温度大于375摄氏度至450摄氏度,且第二温度小于100摄氏度。在一些实施例中,在经加热的表面顶部上执行在基板的顶部上沉积第一铝层以形成具有第一晶粒尺寸和第一温度的第一铝区域,并且其中通过将基板从经加热的表面移开来执行冷却。在一些实施例中,以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将第一铝区域冷却到第二温度的步骤进一步包括以下步骤:延迟将基板的顶部上的第一铝区域传送到快速冷却腔室。在一些实施例中,以4kw至60kw的量的第一dc功率执行沉积第一铝层。在一些实施例中,通过在物理气相沉积工艺中将基板暴露于铝和氩来沉积第一铝层。在一些实施例中,使用包括铝靶的物理气相沉积工艺来形成铝材料。在一些实施例中,以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将基板顶部上的第一铝区域冷却到第二温度的步骤进一步包括以下步骤:增加邻近基板的背侧的气流以冷却基板。72.在一些实施例中,在反应器腔室中在定位于铝溅射靶下方的工件支撑件上的基板上执行物理气相沉积的方法包括以下步骤:将经加热的工件支撑件的顶部上的基板维持在200℃至400℃的第一温度和低于10毫托的第一压力下;通过向铝溅射靶施加约4kw至60kw的第一dc功率和至少600w的第一ac靶偏压功率来从铝溅射靶溅射原子;维持反应条件达足以形成具有第一晶粒尺寸的第一铝层的持续时间;将基板的冷却延迟达第一持续时间;以及以足以将第一晶粒尺寸增加到第二晶粒尺寸的速率将第一铝层冷却到第二温度。在一些实施例中,将第一铝层冷却到第二温度的步骤包括以下步骤:提供邻近基板的背侧的气流以冷却基板。在一些实施例中,以每秒10摄氏度至40摄氏度的冷却速率执行冷却。在一些实施例中,延迟冷却的步骤进一步包括以下步骤:将基板从工件支撑件移开。在一些实施例中,延迟的步骤进一步包括以下步骤:通过将基板与一个或多个升降杆接触来将基板从工件支撑件移开。在一些实施例中,延迟冷却的步骤包括以下步骤:延迟将基板传送到快速冷却腔室。73.现在参考图5,示出了根据本公开的一些实施例的物理气相沉积(pvd)腔室500的示意性截面图。在实施例中,将晶片或基板501沉积在静电吸盘506的经加热表面505上方。在实施例中,通过移动一个或多个升降杆510以将基板501举离静电吸盘506的经加热表面505来冷却基板501。根据本公开,远离静电吸盘506的热辐射(由箭头520示出)以受控方式接触基板501并冷却基板。在基板501和静电吸盘506的经加热表面505之间示出了间隙(由箭头530示出)。根据本公开,气体可以在基板501或晶片后面流动,进一步以受控方式冷却基板501。74.图6描绘根据本公开的一些实施例的用于处理基板的另一种方法600的流程图。图6依序示出适合于在本公开的方法中使用的气体腔室601、用于沉积的处理腔室602、冷却腔室603、传送腔室604和foup 605。在一些实施例中,冷却腔室603被移动到紧邻foup 605的位置以利于根据本公开的延迟的冷却。在实施例中,方法600包括以下步骤:延迟冷却包括所沉积的铝的基板。75.在一些实施例中,本公开的方法被应用于用于铝沉积的工艺序列,其中沉积工艺序列和沉积后工艺序列各自促进铝晶粒的生长。例如,根据本公开的冷却可以与铝沉积工艺序列结合,其中沉积工艺序列促进或形成具有增加的晶粒尺寸的铝。在一个工艺序列中,所述方法可包括以下步骤:预热基板,诸如将基板加热到200摄氏度至400摄氏度(例如约200摄氏度)的温度。在实施例中,预热基板的步骤可包括使用基座加热器来在基板的中间附近、沿着基板的边缘或者在基板的中间附近且沿着基板边缘将基板加热到预定温度。取决于工艺需要,基板的中间和基板的边缘可各自具有预定温度,所述预定温度可以相同或不同。在实施例中,基板的边缘的温度比基板的中心温暖20度至50度。在实施例中,可以通过沉积铝种晶层来继续工艺序列,其中种晶层包括在整个基板上均匀分布的晶粒尺寸。例如,在实施例中,利用等离子体能量来加热基板。在实施例中,唯一的热源是等离子体,且未提供散热器。等离子体加热在基板内均匀地传递热,并将基板均匀地加热到预选温度。在实施例中,根据本公开的等离子体加热形成具有均匀的中心/边缘晶粒尺寸的铝层合成物。在实施例中,预先选择种晶层的厚度以使在基板的中心和基板的边缘两者处的种晶晶粒生长到成熟阶段。在一些实施例中,可通过使基板与背侧气体接触并减少沉积冷却循环以使铝快速生长来继续工艺序列。在一些实施例中,将背侧气体引向基板的中心以冷却晶片中心。在一些实施例中,背侧气体冷却晶片,同时避免晶须形成或晶粒生长不均匀。在实施例中,工艺序列继续如上所述的本公开的冷却工艺。因此,铝的沉积和快速冷却的沉积后延迟可延长铝晶粒的生长。在一些实施例中,所沉积的铝的晶粒尺寸或平均晶粒尺寸为约1.5微米,使用本公开的工艺,其可以变得更大至2-4微米,诸如2.0微米、2.4微米、2.6微米、2.8微米、3.0微米、3.2微米和3.8微米。76.现在参考图7,示出了根据本公开的一些实施例的物理气相沉积(pvd)腔室700的示意性截面图。在实施例中,将晶片或基板701沉积在静电吸盘706的表面705上方。在实施例中,根据本公开的实施例,基板701配置成用于沉积铝。根据本公开,等离子体(由箭头721示出)接触基板701并且以受控方式加热基板。在基板701和静电吸盘706的表面705之间示出了间隙(由箭头730示出)。根据本公开,气体可以在基板701或晶片后面流动,进一步以受控方式冷却基板701。在实施例中,提供双区加热器750,且双区加热器750配置成将基板加热到预定温度以用于铝沉积。在实施例中,双区加热器750配置成将基板的外边缘加热到预定温度,所述预定温度可与基板中心的预定温度相同或不同。77.图8描绘根据本公开的一些实施例的用于处理基板的另一种方法800的流程图。图8依序示出适合于在本公开的方法中使用的脱气腔室801、用于沉积的处理腔室802、冷却腔室803、传送腔室804、冷却腔室805和foup806。在一些实施例中,冷却腔室803被移动到紧邻foup 806的位置以利于根据本公开的延迟的冷却。在实施例中,方法800包括以下步骤:延迟冷却包括沉积的铝的基板。在实施例中,方法800适合于最大化铝晶粒尺寸并允许晶粒边界松弛以避免凸起形成。78.在一些实施例中,本公开涉及在反应器腔室中在定位于铝溅射靶下方的工件支撑件上的基板上执行物理气相沉积的方法,所述方法包括以下步骤:可选地将基板预热到第一温度;使基板与足以将基板维持在200℃至400℃的第一温度的量的等离子体接触;通过向铝溅射靶施加约20kw至60kw的第一dc功率来从铝溅射靶溅射原子,以形成具有均匀分布的晶粒尺寸的第一铝种晶层;在将铝沉积到预定厚度的同时,使基板与背侧气体接触以冷却基板;以及将基板顶部上的铝冷却到第二温度以将第一晶粒尺寸增加到第二晶粒尺寸。在实施例中,所述方法适合于避免随机晶粒定向和避免铝垫异常。在实施例中,等离子体为沉积期间的晶粒生长提供能量,且根据本公开的冷却或延迟的快速冷却增强沉积后的晶粒生长。在实施例中,在沉积之后,允许能量通过基板均衡(equalize)以减小中心/边缘晶粒尺寸的变化,并允许晶粒边界松弛(例如通过慢冷方法)。79.虽然前述内容针对本公开的实施例,但在不背离本公开基本范围的情况下,可设计本公开的其他与进一步的实施例。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
用于由具有受控冷却的物理气相沉积(PVD)来沉积铝的方法和设备与流程
作者:admin
2022-07-23 17:58:00
991